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Why new force fields? Molecular modeling is widely used in diverse pharmaceutical discovery applications,
but its utility and predictive power is limited by the accuracy and generality of the underlying molecular
mechanics force field used to compute the energetics of biomolecular systems. Current molecular mechanics
force fields are built on early modeling work largely performed in the 1980s and 1990s, and the software
infrastructure for developing, refining, and applying them has remained largely unchanged since. While
the current models and tools play a key role in the pharmaceutical discovery pipeline, improved accuracy
is needed to more effectively guide pharmaceutical discovery and design and to reduce costs and time to
market. In summary, a new approach and a modern software infrastructure are needed to allow better
force fields to be systematically and rapidly built, updated, and applied.

How we build new force fields The Open Force Field Consortium (OpenFF) is an open, industry-funded, pre-
competitive effort to build iteratively more accurate force fields to improve predictive design, along with
the necessary infrastructure to drive further force field improvements and science. We are taking a three-
pronged approach:

+ Open science: Performing new research to inform design and support development of modern force
fields, which is rapidly disseminated through the Initiative's website, events, scientific publications,
and social media.

+ Open source: Building a maintainable, extensible automated Python infrastructure to enable rapid
cycles of optimization and facile integration into existing workflows, following the best practices of
software development. The core infrastructure components used in force field parameterization are
OpenFF Toolkit, ForceBalance, OpenFF Evaluator and QCArchive (see below). These are made publicly
available under open source licenses to facilitate replication, reuse, and extension by other research
groups.

+ Open data: Creating and curating datasets used in force field parameterization and benchmarking,
released under Creative Commons or similar licenses for easy reuse.

The OpenFF force fields are iteratively improved through automated optimization cycles, and each release is
evaluated with an ever-growing benchmark suite. Early feasibility studies identify whether new research in-
novations (such as off-center charges) are ready to incorporate into automated fitting cycles. Improvements
may derive, for example, from better data selection protocols, optimization procedures, type definitions, or
functional forms. All software, documentation, data, and force fields are made openly available, as detailed
at https:/ /openforcefield.org/, allowing industry partners to make use of our force fields and infrastructure in
their own discovery programs and workflows, enabling other researchers to further test and build on our
research products, and ensuring long-term availability.
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Progress in the first two years.

Sinceitslaunchin Oct 2018, OpenFF has met all milestones to date, which include infrastructure deliverables
and force field releases (Figure 1). The first year focused on open toolkit development and automated
parameterization and benchmarking workflows. In the second year, we have continued to develop OpenFF
infrastructure by adding new features to the existing packages, starting some new projects (bespoke torsion
parameterization, system object development, and others) and improving documentation. In addition, we
focused on improving our force fields through a series of targeted scientific studies aimed at devising better
performing chemical perception and data selection algorithms, and benchmarking workflows.
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Figure 1. Open Force Field milestones. This graphic highlights the most important achievements of the Open Force
Field Consortium since its launch in Oct 2018, and the anticipated progress in Year 3 (2021). All currently available and
upcoming force field releases are depicted above the timeline, while the infrastructure progress is shown below.

Some of the most important milestones achieved so far are listed below:

+ Force fields. We have released three optimized versions of the first generation of Open Force Fields
(codename "Parsley") - OpenFF-1.0.0(10/2019)[1], OpenFF-1.1.0 (03/2020), and OpenFF-1.2.0 (06/2020).
After releasing an initial general-purpose force field with unprecedented coverage per number of pa-
rameters (SMIRNOFF99Frosst), OpenFF iterated through three refinements of chemical typing, each
refit improving accuracy for targeted chemistries (Figure 2 A, B) and addressing other limitations to
achieve comparable performance to other publicly available or commercial force fields (Figure 2 C, D).
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Figure 2. Force field benchmarking demonstrates significant improvements with each generation. Preliminary
assessments of OpenFF and other small molecule force fields (FF) compared to quantum mechanical (B3LYP-D3BJ/DZVP)
gas phase energies (A, C) and geometries (B,D) of a selected set of molecular conformers.
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Our most recent release, OpenFF-1.2.0, seems to perform particularly well for test datasets that in-
clude industry-provided molecules, such as a set of particularly challenging fragments from Pfizer.
Furthermore, as recently reported[2], we obtained promising results in relative binding free energy
calculations for a congeneric series of ligands of the non-receptor tyrosine kinase Tyk2, where OpenFF-
1.0.0 was used for ligands and AMBER14SB and TIP3P for protein and water, respectively (Figure 3).
The calculated RMSE of 0.97 [95% Cl: 0.68, 1.22] kcal/mol is statistically indistinguishable from the
Schrodinger JACS benchmarking result [3].
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Figure 3. Force field accuracy approaching OPLS3e. Relative alchemical free energy calculations on the Tyk2 ki-
nase:inhibitor system from the Schrodinger JACS benchmark set show OpenFF 1.0.0 achieves an RMSE of 0.97 [95% Cl:
0.68, 1.22] kcal/mol, statistically indistinguishable from the results reported by Schrédinger [2].

+ Software. Most of the early efforts of the OpenFF Initiative were directed toward building an auto-
mated infrastructure for force field optimization and benchmarking (Figure 4). All our software can be
found on GitHub. The core software development projects include:

- OpenFF Toolkit: a Python toolkit providing implementations of OpenFF's innovative force field
specification (SMIRNOFF), parameterization engine, and many other tools. Some of the capa-
bilities include charge assignment (via library charge or flexible partial charge calculations), tor-
sion interpolation based on Wiberg Bond Order, GBSA support, parameter coverage checks, etc.
Seven increasingly powerful versions of the toolkit have been released up to date. Full documen-
tation can be found here.

- OpenFF Evaluator: an automated and scalable framework for curating, manipulating, and com-
puting datasets of physical properties from molecular simulation and experimental data. This
flexible framework has added new features with each release, and one of the latest versions
(v0.1.0) constitutes almost a full redesign of the framework with a focus on stability and ease of
use. Full documentation can be found here.

- ForceBalance: a powerful and highly versatile software package for force field optimization. In-
tegration of ForceBalance with the OpenFF Toolkit and OpenFF Evaluator was an important step
in development of our fully automated force field optimization infrastructure.

- QCArchive: a free, community-driven, multi-user quantum chemistry database. Adaptation and
use of QCArchive components to compute and store quantum chemistry data used in force field
parameterization and benchmarking has been a key part of OpenFF infrastructure development.

More information about the anticipated infrastructure projects and activities can be found on the cur-
rent OpenFF infrastrucure roadmap.
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Figure 4. Open Force Field framework. The OpenFF software framework used in force field optimization and bench-
marking cycles.

+ Research. To this date, OpenFF research has led to publication of six peer-reviewed articles [4-9] and
two preprints [10, 11] that are headed toward peer-reviewed publication. The full list of publications
and preprints that resulted from the Open Force Field Consortium/Initiative’s work to date is available
on our website. Our scientific roadmap provides a full list of planned research projects for this year
and beyond. These projects will be integrated with the broader infrastructure as they mature and test
out, and the results of the feasibility studies will be reported early on our website and in preprints,
and ultimately in peer-reviewed journals.

Year 3 and beyond. OpenFF research activities are tightly coupled with infrastructure development, and
aimed at continuous improvement of the produced force fields. In the coming year, OpenFF will reap major
accuracy benefits resulting from infrastructure and science investments made in the first two years. Partic-
ularly strong progress is expected in the following areas:

+ Bespoke parameterization workflow to refit torsions to QM or quantum machine learning (includ-
ing ANI-2x [12]).

« Improved torsion accuracy for the general force field based on Wiberg bond order (WBO)-based
parameter interpolation, planned to be included in the OpenFF-2.0.0 force field release (codename
"Sage").

+ Improved charge models via support for AM1-BCC and off-center charges, and machine learning-
based charge models. A feasibility study will test which model provides the best balance between
speed and accuracy, and that model will be subsequently used for a charge refit in the OpenFF-3.0.0
force field generation (codename "Rosemary").

+ Automated typing inference (for selected cases) and continued improvements to chemical percep-
tion to enhance force field performance, potentially allowing fit of full force field from scratch and
removing any legacy problems in the force fields.

+ Extensive, ongoing assessment of force field performance with respect to QM conformational
energetics and to experimental protein-ligand binding free energies, with comparisons against other
publicly available force fields, using automated benchmarking protocols and infrastructure.

+ Consistent small molecule, biopolymer, and solvent force fields leading to accuracy improve-
ments. This component benefits from synergy with NIH support of the OpenFF Initiative's effort to
produce a consistent biopolymer force field.

Additional scientific innovations will be integrated to improve accuracy as parallel science efforts demon-
strate their utility in protein-ligand modeling. An additional long-term research and infrastructure aim in-
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cludes development and implementation of Bayesian inference and surrogate modeling as a central part
of our force field optimization infrastructure, also supported by the NIH grant.
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