
PROJECT SUMMARY/ABSTRACT
The study of biomolecular interactions and design of new therapeutics requires accurate physical models of
the atomistic interactions between small molecules and biological macromolecules. Over the least few decades,
molecular mechanics force fields have demonstrated the potential that physical models hold for quantitative
biophysical modeling and predictive molecular design. However, a significant technology gap exists in our ability
to build force fields that achieve high accuracy, can be systematically improved in a statistically robust manner, be
extended to new areas of chemistry, can model post-translational and covalent modifications, are able to quantify
systematic errors in predictions, and can be broadly applied across a high-performance software packages.
In this project, we aim to bridge this technology gap to enable new generations of accurate quantitative biomolec-
ular modeling and (bio)molecular design for chemical biology and drug discovery. In Aim 1, we will produce a
modern, open infrastructure to enable practitioners to rapidly and conveniently construct and employ accurate
and statistically robust physical force fields via automated machine learning methods. In Aim 2, we will construct
open, machine-readable experimental and quantum chemical datasets that will accelerate next-generation force
field development. In Aim 3, we will develop statistically robust Bayesian inference techniques to enable the auto-
mated construction of type assignment schemes that avoid overfitting and selection of physical functional forms
statistically justfied by the data. This approach will also provide an estimate of the systematic error in predicted
properties arising from uncertainty in parameters or functional form choices—generally the dominant source of
error—to be quantified with little added expense. In Aim 4, we will integrate and apply this infrastructure to produce
open, transferable, self-consistent force fields that achieve high accuracy and broad coverage for modeling small
molecule interactions with biomolecules (including unnatural amino or nucleic acids and covalent modifications by
organic molecules), with the ultimate goal of covering all major biomolecules.
This research is significant in that the technology developed in this project has the potential to radically transform
the study of biomolecular phenomena by providing highly accurate force fields with exceptionally broad chemical
coverage via fully consistent parameterization of organic (bio)molecules. In addition, we will produce new tools to
automate force field creation and tailoring to specific problem domains, quantify the systematic error in predictions,
and identify new data for improving force field accuracy. This will greatly improve our ability to study diverse
biophysical processes at the molecular level, and to rationally design new small-molecule, protein, and nucleic
acid therapeutics. This approach will bring statistical rigor to the field of force field construction and application
by providing a means to make data-driven decisions, while enhancing reproducibility by enabling it to become a
rigorous and reproducible science using a fully open infrastructure and datasets.

Contact PD/PI: Shirts, Michael R

Project Summary/Abstract                                                                                      
 Page 8



SPECIFIC AIMS
Molecular simulation is a powerful tool to predict the properties of biomolecules, interpret biophysical experiments,
and design new small molecules or biomolecules with therapeutic utility. In recent years, biomolecular simulation
software and applications have benefited from massive increases in computational power. However, improvements
in the force fields at the heart of simulations have proceeded at a slower pace. As a consequence, the utility of
molecular simulations is still significantly limited by the insufficient accuracy and limited domain of applicability
of current force fields. The overall goal of this project, therefore, is to improve the accuracy of simulations by
driving the development of new and improved force fields. To do this, we will develop and apply new technology,
comprising an open, extensible, and shared software and data infrastructure, implementing statistically robust
methods of parameterizing force fields and of choosing the structure of force fields in a statistically sound manner.
This infrastructure will enable modelers to rapidly create new force fields that incorporate new data, choose and
utilize new functional forms, and extend to new chemistries, significantly enabling computational biophysical and
biomedical investigation. This work will create not just a new generation of force fields, but an open technology to
continue advancing force field science. This will be accomplished via the following Aims:
Aim 1: Create a modern, open software infrastructure for automatically generating and validating force
fields and utilizing them broadly in modeling packages. We will develop an automated, easy-to-use infras-
tructure for generating, optimizing, and validating force fields using specified experimental and quantum chemical
datasets. These tools will allow practitioners to develop, refine, validate, and apply highly accurate force fields
with either broad biomolecular coverage or tailored to application domains of interest, in a manner that enables
their use in all major modeling packages. In doing so, we will reformulate legacy atom type based force fields to
use direct chemical perception via modern cheminformatic tools. This reformulation will resolve a decades-old
design flaw, allowing us to simplify and streamline force field development, especially for small molecules. We
also propose new ways to accelerate the parameterization process, making it orders of magnitude faster by using
hierarchical surrogate models of simulation properties.
Aim 2: Construct open datasets and databases for next-generation force field development. Constructing
and validating high-accuracy force fields requires access to large quantum chemical datasets and curated ex-
perimental measurement datasets. We will create and provide rapid, facile access to large, high-quality, open,
and revision-controlled datasets. First, we will construct a quantum chemical database to provide high-accuracy,
comprehensive, and easily queried large-scale ab initio datasets useful for parameterizing small molecules with
significantly expanded coverage of drug-like space, as well as chemical fragments of a broad range of biomolecules
and biological macromolecules. Second, we will generate high-quality physical property and biophysical datasets
to inform the training and validation of parameters we are fitting. Third, we will automate the synthesis of chemi-
cally diverse host molecules, and the measurement of their binding thermodynamics with varied guest molecules,
generating a large new dataset to drive creation of force fields well-suited for modeling noncovalent binding.
Aim 3: Develop Bayesian inference techniques to address key questions in force field physical modeling
and predict systematic error. Traditional approaches to force field development based on minimizing an error
function provide little information regarding which models of physical interactions, differing in either functional form
or number of parameters, are most appropriate, which new data would most rapidly improve prediction accuracy,
and when predictions will be unreliable. We will embed the force field parameterization problem in a Bayesian
context, providing practical, statistically robust tools to address these questions. The same Bayesian formalism
will allow us to identify minimal sets of experiments that maximally reduce force field uncertainty.
Aim 4: Integrate the results of Aims 1–3 to construct and validate open source, transferable, and self-
consistent force fields for small molecule interactions with complex biomolecular systems. We will utilize
the infrastructure developed here to produce an open set of versioned force fields applicable to , along with
versioned datasets used to generate the force fields so that practitioners can utilize or further refine them with in-
house data. From the same datasets, we will generate consistent sets of force fields of varying functional complexity
(such as fixed-charge and polarizable electrostatics) to enable systematic study of accuracy-generalizability of
more complex models. These force fields will be validated by comparison to experimental NMR, X-ray, HDX, and
temperature-dependent measurements, using open and automated simulation workflows to ensure reproducibility.
To accomplish these Aims, we have established the Open Force Field Initiative, a multidisciplinary team with
extensive individual and collaborative experience in force field development and related areas to integrate and
apply the diverse technologies involved. The resulting infrastructure and force fields will have a transformative
effect on the rapidly growing field of biomolecular simulation and modeling through increased accuracy, expanded
domains of applicability, and facile extensibility to meet modern challenges in biology and drug discovery.
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SIGNIFICANCE
Molecular simulations are powerful but have not reached their full potential. Atomistic molecular simulations
can now address significant biomolecular questions encountered in human health and disease and provide predic-
tions of small molecule binding affinity, selectivity, and bioavailability.7–18 While we now possess the techniques,
algorithms and computing power to investigate many details of biomolecular function and guide small molecule and
biomolecular design, these techniques could still be significantly improved in both predictive accuracy and domain
of applicability in order to broadly probe disease mechanisms and enable truly de novo molecular engineering.
More accurate force fields are needed to overcome current limitations in small molecule design. Advances
in computing power have enabled massive increases in conformational sampling, with µs-timescale simulations
now routine.19 Although computing power is not yet sufficient for many problems involving very long time scales,
it has become clear the accuracy of current force fields limits the utility of atomistic modeling where available
computational power is much less of a limitation.16;20;21 With the specialized supercomputer Anton 222 that has
enabled simulation to longer time scales, the Shaw group has also found it necessary to address force field
inaccuracy in protein structural dynamics.23;24 In the cases where sampling challenges are easily overcome,
such as the prediction of binding thermodynamics of druglike small molecules to macromolecular hosts, or small
molecule transfer free energies, force field inaccuracy is consistently shown to limit predictive utility.11;12;25–31

Force fields are still insufficiently accurate to deliver on the promise of eliminating trial-and-error cycles in real-
world molecular design projects.7;8 While recent small molecule force field efforts such as GAFF,32;33 GAFF2,34

CGenFF,35–37 and ATB38 represent notable progress, problematic legacy assumptions and errors are retained1

and modern models are still lacking in predictive accuracy.35;36;39 While the proprietary OPLS340;41 reports
somewhat improved accuracy within a legacy force field framework,9;42;43 its license terms prohibit independent
accuracy benchmarks or the decryption of its parameters, effectively prohibiting improvements or examination
of failures. It is clear from users in the pharmaceutical industry that OPLS3 provides insufficient accuracy and
coverage of chemical and biomolecular space (see letters from Bayer, BI, BMS, GSK, Merck, Pfizer, and Roche).
Significant changes in force field parameterization approaches are needed to accelerate progress in force
field development. The core of most present-day force fields—pairwise-additive nonbonded interactions us-
ing partial charges and Lennard-Jones interactions—dates primarily from decades-old work.44;45 Over the past
decade, new force field development has primarily been limited to small, incremental improvements on the existing
paradigm;37;40;41;46–50 Even the recent COMPASS II51 and OPLS3,40;41 with significant commercial effort, are
primarily partial parameter refits. The slow pace of progress stems from several causes that can and should be
changed: (1) Current force fields are built via decades of human decisions guided by chemical intuition rather
than reproducible methodologies, making it difficult to backtrack on decisions made long ago that prove limiting
for accuracy or extensibility, or to refit the entire force using new datasets. (2) Parameterization procedures lack a
statistical framework to prevent overfitting, resulting in a proliferation of atom types and hence valence parameters.
(3) Legacy software infrastructure—in particular, custom atom-based typing models—frustrates the development
of force fields that can generalize to the breadth of chemical functionalities of interest. (4) Academic efforts to
build new force fields, such as the AMOEBA and Drude approaches, focus on wholly new physical models such
as multipoles and polarizability that can carry significant performance penalties52–54 without consistent validation
strategies to specifically assess the impact of these functional forms. Evidence suggests the accuracy of faster
fixed-charge force fields may still be substantially improved,12;37;41;50;55–57 so we must quantify the predictive gain
of more detailed and expensive models in order to properly weigh accuracy/expense tradeoffs.

Aim 1: Create a modern, open infrastructure 
for automatically generating and validating 
force fields and utilizing them broadly in 
modeling packages

Aim 2: Construct open datasets and databases for 
next-generation force field development

Aim 3: Develop Bayesian inference techniques 
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questions in force field modeling and predict 
systematic error in calculations
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Figure 3. ForceBalance allows for automated parameterization. (Left) Workflow: Starting with an initial force field as input, selected
properties are computed and compared with reference data. The objective function and parametric derivatives are calculated, and an
optimization method minimizes the objective function to improve agreement with experimental data. The cycle repeats until the optimization
converges, allowing fully automated fitting of force fields of diverse functional forms. (Right) TIP3P-FB is a substantially better water model
with the same number of adjustable parameters, developed to fit six properties relative to experiment (three of which are shown at top)
leading to overall better performance than TIP3P, including properties not fitted shown at bottom.

Merck’s parm@Frosst (an Amber parm99 descendant), in which a parameter definition file only ⇠300 lines long
can parameterize a large and diverse spectrum of pharmaceutically relevant small molecule chemical space —
in fact providing better coverage of chemical space than GAFF and GAFF2, which are both over 7000 lines long
(See Fig. 2). Benchmarks of this minimalist force field on the FreeSolv small molecule hydration free energy set
and calculations of densities and dielectric constants from the ThermoML Archive demonstrate that it achieves
comparable accuracy to GAFF even without parameter optimization39.
Beyond the issue of atom typing, force field fitting is challenging to automate because it involves many intercon-
nected tasks that are arduous to carry out and difficult to reproduce—these tasks include collecting the training
data set of properties, computing the properties from the force field, and tuning parameters to maximize agree-
ment. Automated approaches to fitting have existed since the late 1990s,52–54 but the great diversity in functional
forms, simulation software, training data, and parameter tuning methods has limited the broader applicability of
any automated package.
Recently, the ForceBalance package developed by co-investigator Wang has been very successful for auto-
matically fitting force fields to specific target properties, including quantum mechanical data, condensed-phase
properties, etc. (Figure 3 left). Recent uses of ForceBalance include development of a new three-point water model
with dramatically improved properties55 (Figure 3 right), a new AMBER-family protein force field with improved
accuracy56 (Figure 4a and 4b), and polarizable models of nanoporous graphene for desalination57. ForceBalance
is designed to fit force fields of essentially any type, as it has an interface for adjusting general parameters that
does not assume any functional form, and it contains interfaces to several molecular simulation packages (e.g.
AMBER, GROMACS, and OpenMM). It uses traditional (trust-radius Newton-Raphson) optimization methods, in
contrast to the more advanced Bayesian approach we will explore in Aim 3, reducing the risk of the project by
requiring interdependent aims.

It is especially important to note that SMIRNOFF format force fields, without atom types, provide a dramatically
better starting point for optimization with tools like ForceBalance. Traditional force fields, due to limitations of
atom typing, include hundreds or thousands of lines of redundant parameters. For example, SMIRNOFF99Frosst’s
parent force field, parm@Frosst, has hundreds of lines of duplicated angle parameters and thousands of lines
of duplicated torsional parameters, and similar issues occur in GAFF and GAFF2. By virtue of using direct
chemical perception, SMIRNOFF99Frosst uses 10-20 times fewer adjustable parameters than parm@Frosst
and GAFF/GAFF2? [ref preprint], meaning that refitting will ultimately be far easier and require considerably less
human intervention.
Because we have already reformulted an AMBER-family small molecule force field in SMIRNOFF format, and
ForceBalance can handle the majority of the parameter optimization work needed already, thanks to its general
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Figure 1. The proposed work will develop technologies for producing significantly improved force fields for molecular simulation.
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There is an unmet need for force fields that are more chemically complete. Beyond the force field issues
in protein-ligand interactions described above, key classes of biomolecules cannot be accurately simulated with
current force fields. Nucleic acid force fields have lagged behind protein force fields despite recent progress,46;54;58

Greater accuracy is needed to model or design protein-DNA (e.g., transcription factors59) or protein-RNA-DNA
(e.g., CRISPR60;61) interactions. Lipid force fields suffer from accuracy issues when simulating membranes62–64

while carbohydrates and glycoproteins are difficult to simulate with current force fields. Models such as GLYCAM65

have made some headway but development has not kept pace with proteins. Protein force fields still require
improvement,21;24 with accurate modeling of intrinsically disordered proteins being particularly difficult.24;24;66;67

Heterogeneous systems, combining standard amino acid or nucleic acid residues with nonstandard/modified ones,
pose particular problems. Examples include proteins with post-translational modifications, unnatural amino acids,
and biomolecules bound to covalent inhibitors. In principle, a force field should assign consistent parameters to
such systems, but in practice, the parameters for components of a heterogeneous system (if available) are often
developed by different research groups following different strategies, resulting in models that risk incompatibility.
Force field development must move from manual decisions to reproducible, statistically-guided pro-
cesses. There is a clear need for software tools and resources to automate the process of building physical
force fields, tools which also draw on statistically sound approaches to avoid overfitting and ensure generalizability.
Current force fields include hundreds or thousands of adjustable parameters fit to small and inadequate datasets
in stages, or using trial and error, guided by human expertise and intervention. Existing force field efforts generally
target one class of biomolecules, are executed independently by different groups, share little or no common infras-
tructure or datasets, and lack clear ways to subsequently improve the resulting force fields. The field needs better
mechanism to systematically, automatically, and reproducibly parameterize general, accurate atomistic force fields
from disparate experimental datasets with minimal human intervention, hindering our ability to learn from and
correct failures. Current-generation force fields also lack the ability to quantify their systematic error in predicted
properties, leaving practitioners without tools to assess the dominant source of error in predictions.
To resolve these challenges, we will automate fully consistent parameterization of small molecule and
biopolymer force fields using a modern approach free from past limitations on extensibility. Our proposal
focuses on building tools and datasets to drive the next generations of force field development, resolving these
issues and providing a new generation of force fields. Our open infrastructure and data will also enable existing
force field developers to advance their own efforts using our innovations, bringing broad benefits to the community.
INNOVATION
This project will yield the first open, scalable data and software infrastructure designed to reproducibly build, apply,
and validate statistically robust force fields, and introduces significant innovations at multiple levels:
Fully automated force field parameterization breaks from tradition. We will implement a new infrastructure
that will no long require force field creators to decide what atom types are needed a priori, or which parameters
should be optimized; instead, creators will assemble training and validation datasets, select physical functional
forms to consider (e.g., fixed partial charges with the point polarizable dipoles or multipoles where needed), and
choose a model representation (e.g., constrained hydrogens, virtual-site point charges for lone pairs, etc.). The
infrastructure will automatically evaluate the evidence supporting each model, defined by both choice of parameters
and if desired, choice of functional form. This approach is a complete break from traditional incremental, “artisanal”
parameterization. To make this possible, we will integrate modern, scalable software infrastructures to coordinate
automated parameterization efforts across available computational resources while keeping the software modular,
so that researchers can easily integrate new experimental or quantum chemical data sources.
We will develop an open collection of high-quality data sets designed to enable reproducible biomolecular
force field construction and validation. Our effort will collect, curate, and organize high-quality open datasets
for small molecule and biomolecular force field parameterization, coordinating with existing force field development
communities (see letters from Cheatham, Ollila, Roux, MacKerell, Riniker, Roitberg, Simmerling, and Wang) to
maximize impact. Working with the Molecular Software Sciences Institute (MolSSI), we will populate a new public
quantum chemical database (QCArchive68)—developed to publicly aggregate and share quantum chemical data—
with key datasets for biomolecular force field parameterization using automated workflows, allowing the community
to submit molecules to greatly expand coverage of and accuracy within chemical space. To generate experimental
datasets necessary to build and validate general small molecule and biomolecular force fields, we will curate
high-quality experimental physical property datasets in collaboration with NIST (see Letter), utilize automated
synthesis and calorimetry to generate large new thermodynamic datasets for small molecule binding, and compile
high-quality experimental biophysical datasets for force field parameterization and validation.
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<?xml version="1.0"?>
<SMIRNOFF>

<HarmonicBondForce length_unit="angstroms" k_unit="kilocalories_per_mole/angstrom**2">
   <Bond smirks="[#6X4:1]-[#1:2]" length="1.090" k="680.0"/>
   <Bond smirks="[#6X4:1]-[#8&amp;X2&amp;H1:2]" length="1.410" k="640.0"/>
   <Bond smirks="[#8X2:1]-[#1:2]" length="0.960" k="1106.0"/>
</HarmonicBondForce>

<HarmonicAngleForce angle_unit="degrees" k_unit="kilocalories_per_mole/radian**2">
   <Angle smirks="[a,A:1]-[#6X4:2]-[a,A:3]" angle="109.50" k="100.0"/>
   <Angle smirks="[#1:1]-[#6X4:2]-[#1:3]" angle="109.50" k="70.0"/>
   <Angle smirks="[#6X4:1]-[#8X2:2]-[#1:3]" angle="108.50" k="110.0"/>
</HarmonicAngleForce>

<PeriodicTorsionForce phase_unit="degrees" k_unit="kilocalories_per_mole">
   <Proper smirks="[a,A:1]-[#6X4:2]-[#8X2:3]-[#1:4]" idivf1="3" periodicity1="3" phase1="0.0" k1="0.50"/>
</PeriodicTorsionForce>

<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5" sigma_unit="angstroms" epsilon_unit="kilocalories_per_mole">
   <Atom smirks="[#1:1]" rmin_half="1.4870" epsilon="0.0157"/>
   <Atom smirks="[$([#1]-[#6]-[#7,#8,#9,#16,#17,#35]):1]" rmin_half="1.3870" epsilon="0.0157"/>
   <Atom smirks="[#1$(*-[#8]):1]" rmin_half="0.0000" epsilon="0.0000"/>
   <Atom smirks="[#6:1]" rmin_half="1.9080" epsilon="0.1094"/>
   <Atom smirks="[#8:1]" rmin_half="1.6837" epsilon="0.1700"/>
   <Atom smirks="[#8X2+0$(*-[#1]):1]" rmin_half="1.7210" epsilon="0.2104"/>
</NonbondedForce>

</SMIRNOFF>

(a)
(b)

Figure 2. The SMIRKS Native Open Force Field (SMIRNOFF) approach to direct chemical perception. (a) Excerpt of the
SMIRNOFF 0.1 format representation of a force field covering alkanes, ethers, and alcohols, highlighting terms that match force types in
methanol. 1 (b) SMIRKS allows for direct chemical perception via chemical substructure matching; here, a single SMIRKS pattern matches
three different substructures in two different molecules, with colors denoting corresponding components of matching SMIRKS string.1

Direct chemical perception breaks free from limitations of atom types. Typically, atom types, crafted by hu-
man experts, are used to assign force field parameters. These atom types must encode the entire range of distinct
chemical environments the force field requires, which hampers extension of these force fields into new areas of
chemical space. Assigning bond, angle, and torsion parameters using atom types leads to needless proliferation
of parameters, as well as a multitude of opportunities for human error when attempts a new type is introduced
without rebuilding the entire force field.1 We plan to avoid atom typing altogether, and instead assign parameters
directly based on the chemical graph.1 Recently, we introduced a new force field specification format called the
SMIRKS Native Open Force Field (SMIRNOFF) specification which implements this concept (Figure 2b),1 which
uses the widely supported SMARTS chemical perception standard69 and the atom-tagging features of SMIRKS70

to directly assign van der Waals, bond, angle, and torsion parameters based on the local chemical environments.
This approach solves numerous problems with legacy atom typing, and easily accommodates new van der Waals
types without causing an explosion in additional bonded types. The format is hierarchical, with more specific child
parameters overriding general parent parameters only as needed, enormously reducing complexity and aiding
extensibility (Figure 2a).1 By adopting SMIRNOFF, our optimization approach can automate determination of both

the number and definition of types as well as the more traditional numerical parameters (equilibrium values, force
constants, Lennard-Jones parameters, etc.).
Bayesian model construction blends the best aspects of physical modeling and data-driven machine
learning, automating physical model selection, avoiding overfitting, and estimating error. This project takes
a novel approach to automate learning physical force fields from experimental and quantum chemical data,
leveraging our knowledge of fundamental physical interactions to construct predictive models that generalize
beyond their training data. This approach differs fundamentally from recent work that uses pure machine learning
methods to learn physical interaction laws and invariants using general function approximators.6;71–73 Instead, we
embrace physics-based force field functional forms, which have already demonstrated remarkable predictive power
and transferability even for properties far outside their expected domain of applicability,74 have widespread support
in high-performance simulation codes, and show clear opportunities for improvement.12;37;41;50;55–57 Despite the
primary focus on physical models, there may be opportunities to use deep learning models6;71–73 to describe
valence interactions, which are not always physically well described by harmonic and Fourier terms, and we will
enable the construction and assessment of these models from physical property and quantum chemical data.
Our Bayesian approach uses inferential machine learning to automate the statistically-guided selection of physical
models and their parameters in a manner that penalizes complexity,75–77 ensuring the resulting models generalize
broadly. Specifically, we will exploit Bayesian inference to determine the SMARTS typing hierarchy and associ-
ated parameters (described above), ensuring that the number of types is statistically grounded in the data.78;79

Furthermore, the process will generate not just a single best-fit force field, but also ensembles of parameter sets
that can be used to rapidly estimate the systematic error in a prediction after a simulation has been conducted,
by considering correlated parameter (and typing) uncertainties and their impact on predicted properties.3;80–82 To
make this possible, we employ a set of hierarchical parameter estimation techniques to greatly reduce the cost of
evaluating properties at large numbers of of force field parameters. This approach uses reweighting techniques
developed by the PIs83–88 to adaptively construct inexpensive surrogate models that learn how physical properties
depend on parameter changes.3;89
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APPROACH
We will build a modern, open infrastructure for the development of general force fields that model organic small
molecules, biomolecules, and chemical adducts self-consistently, recasting force field parameterization as a pri-
marily automated machine learning problem that fully exploits known physics. By “modern” and “open”, we mean
modular, extensible, open source, using and documenting open standards and best practices (see Data Sharing
Plan). This infrastructure is needed for transferable, general force fields that easily model new molecular systems.
Aim 1: Create a modern, open software infrastructure for automatically generating and validat-
ing force fields and utilizing them broadly in modeling packages.
We will enable reproducible force field parameterization with a new open software infrastructure that combines
multiple advanced force field technologies. Practitioners of virtual screening are increasingly screening large
libraries, with recent work reporting screens as large as 170M compounds90—which will continue to grow with
purchasable compound libraries such as eMolecules (22M compounds, emolecules.com), Enamine REAL (500M
compounds, enamine.net), and ZINC1591 (750M compounds). Parameter assignment must therefore be designed
to be fast (seconds or less per molecule). This precludes the use of expensive ab initio quantum calculations to
assign force field parameters to individual molecules;92;93 instead, a general force field is needed.
We will therefore employ our new SMIRNOFF format1 (Figure 2b), which can not only make legacy force fields
portable, but enables hierarchical atom-type-free force fields that are dramatically more compact (with many fewer
adjustable parameters) to cover the same chemical space, providing an excellent, extensible foundation for next-
generation force fields. We will use our ForceBalance tool94–98 to automate force field parameter optimization,
and develop an adaptive reweighting and surrogate model construction approach3;84–86;89 to accelerate physical
property estimation for use in parameter optimization and assessment. To benchmark this technology, we will
reparameterize the SMIRNOFF99Frosst small molecule force field and evaluate its performance on partition
coefficients (logD/logP),99 relative solubilities,99 and host-guest binding thermodynamics.100

1A: Reformulate legacy atom type based force fields to use direct chemical perception via modern chem-
informatic tools, resolving a decades-long design flaw to further force field development.
Preliminary results. A key issue impairing the accuracy, transferability, and extensibility of existing force fields is
the use of atom typing. Traditional approaches to defining molecular mechanics force fields use a discrete set of
atom types to encode all information about the chemical environments of atoms. Parameters are then assigned
by looking up combinations of these atom types in tables. This approach leads to a variety of problems, making it
difficult to expand the set of atom types, and leading to unnecessary proliferation of parameters.1

Figure 3. Hydration free energies and host-guest binding free
energies for GAFF and SMIRNOFF99Frosst. The 300-line un-
optimized SMIRNOFF99Frosst force field1 shows comparable
accuracy to the widely used ⇠7000-line GAFF101 for both Free-
Solv hydration free energies102 (top) and host-guest binding free
energies103 (bottom). Densities and dielectric constants show
comparable performance.1

We have developed a new approach to assigning force
field parameters based on direct chemical perception

using the industry standard SMARTS chemical percep-
tion language, with extensions to identify specific atoms
available in SMIRKS. In this approach, each force field
term (bonds, angles, torsions, and nonbonded interactions)
uses separate chemical typing to assign parameters in
a hierarchical manner, instead of using atom types. This
approach can greatly reduce the number of parameters
needed to describe small molecules, biopolymers, lipids,
carbohydrates, and small molecules. As a demonstration,
we developed a minimalist small molecule force field1 de-
rived from Merck’s parm@Frosst104 (an Amber parm99 de-
scendant), in which a parameter definition file only ⇠300
lines long can parameterize a large and diverse set of
pharmaceutically relevant small molecules, providing bet-
ter coverage of chemical space than the ⇠7000-line GAFF
and GAFF2 force fields.1 Hydration free energies, host-
guest binding affinities, densities, and dielectric constants
are reproduced with comparable accuracy despite the
drastic reduction in complexity and increase in coverage
(Fig. 3).1 Existing tools allow SMIRNOFF-parameterized
molecules to be used in all major simulation engines.1
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Figure 4. ForceBalance allows for automated parameterization. (Left) Workflow: Starting with an input force field, observables are
computed and compared with training data. The objective function is calculated and minimized iteratively to improve agreement with
training data. This procedure enables fully automated fitting of force fields of diverse functional forms. (Right) TIP3P-FB95 is a substantially
better water model with the same number of adjustable parameters, developed to fit six properties relative to experiment (three of which
are shown at top) leading to overall better performance than TIP3P, including properties not fitted shown at bottom.
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Figure 5. (Left): ForceBalance yields more accurate potential energy surfaces for proteins. Shown here are potential energy scans
for alanine dipeptide, with quantum mechanics (MP2/aug-cc-pVTZ), AMBER ff99sb-ildn23 and the new ForceBalance94–98 protein force
field, AMBER-FB15.98 Color indicates the relative potential energy with respect to the minimum; AMBER-FB15 accuracy relative to QM
is substantially improved here and for other protein properties. (Right): Temperature dependence validation studies of ForceBalance
protein force fields. Melting curves of a small helical peptide, ACE-(AAQAA)3-NME, and a small beta hairpin, CLN025 are shown.
The experimental data is obtained from established circular dichroism and NMR methods. The AMBER-FB15 model developed using
ForceBalance (blue curve) is one of the best performing models, despite not being optimized to any folding data.

Improved automated tools for force field parameter optimization are needed, because the process involves many
interconnected tasks that are traditionally arduous to carry out and difficult to reproduce, such as collecting the
training data set of properties, computing these properties for trial force fields, and tuning parameters to maximize
agreement. Semi-automated approaches to fitting have been in use since the late 1990s,105–107 but the diversity
of functional forms, simulation packages, and training datasets has limited their broader applicability.
Recently, ForceBalance,94–98 developed by co-I Wang, has been very successful for automatically fitting force fields
to specific target properties, including quantum mechanical data, condensed-phase properties, etc. (Figure 4 left).
Recent uses of ForceBalance include development of a new three-point water model with dramatically improved
properties95 (Figure 4 right), a new AMBER-family protein force field with improved accuracy98 (Figure 5), and
polarizable models of nanoporous graphene for desalination.108 ForceBalance is designed to fit force fields of
essentially any type, using an interface that does not assume a particular functional form, and contains interfaces
to several molecular simulation packages (e.g., AMBER, GROMACS, and OpenMM). It uses trust-radius Newton-
Raphson to minimize an error function that penalizes deviations from experimental and quantum chemical targets,
in contrast to the Bayesian approach we explore in Aim 3, making its application independent of that Aim.
It is especially important to note that SMIRNOFF force fields, which use direct chemical perception (DCP), provide
a dramatically better starting point for optimization. Traditional force fields, due to limitations of atom typing,
include hundreds or thousands of potentially redundant parameters. For example, SMIRNOFF99Frosst’s parent
force field, parm@Frosst, has hundreds of duplicated angle parameters and thousands of duplicated torsional
parameters; similar issues occur in GAFF and GAFF2. By virtue of DCP, SMIRNOFF99Frosst uses 10–20 times
fewer adjustable parameters than parm@Frosst and GAFF/GAFF2,1 and will ultimately be far easier to optimize.
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Single simulation Reweighting

Surrogate ModelRepeat to Consistency
Figure 6. Reweighting allows physical properties to be extrapolated in parameter space. (Far Left): Estimated solvation free energies
can be extrapolated using reweighting over a large range of Lennard-Jones {✏,�} parameter space (upper panel) with low statistical error
(lower panel), using only data from 12 original simulations (crosses). (Near Left): Addition of a single new equilibrium simulation extends
the region of parameter space over which the extrapolation has low statistical error (Naden et al. 87). (Right): Surrogate models can
be used to rapidly estimate properties as a function of parameters. The posterior distributions after each round of (1) simulation of
a single state point, (2) multistate reweighting (MBAR) from all previously sampled points calculates the local response of observables
to change in parameters, and (3) A Gaussian process surrogate model describes the local response to parameter changes. MCMC is
carried out on the surrogate model, rather than by peforming thousands of simulations. At each step, a new simulation is carried out at the
projected optimum. The process is continued until the model converges and no new simulations are required.
Plan: Link ForceBalance to SMIRNOFF infrastructure and property databases to automatically optimize
force fields. ForceBalance94–98 provides a framework to automate optimization of force field parameters to fit
target physical and quantum chemical properties. We will extend ForceBalance to utilize the new SMIRNOFF
approach to direct chemical perception, and build a general framework for the efficient calculation of experimental
and quantum chemical physical properties necessary for building high-accuracy biomolecular force fields: This
includes properties abundant in the ThermoML Archive, including heat capacities, mixture densities, and dielectrics,
as well as host-guest binding thermodynamics from BindingDB (Aim 2). Our SMIRNOFF99Frosst force field1

will provide a starting point for initial refitting. ForceBalance already provides a framework to run the requisite
simulations, manage jobs, etc., so the main task is to extend it to handle SMIRNOFF and additional properties.
1B: Develop methods to accelerate and automate force field assessment and optimization using hierar-
chical surrogate functions of observables rather than direct simulations.
Fitting force fields to condensed-phase measurements is enormously expensive, generally precluding its use in
simultaneous optimization of parameters (e.g.37). A naı̈ve approach to optimization involves new simulations at
least several nanoseconds in length (minutes to hours of wall clock time) to evaluate target properties for each pro-
posed parameter set. To overcome these limitations and permit co-optimization of all parameters simultaneously,
we are developing a hierarchical approach that increases efficiency by orders of magnitude.
Preliminary results. We have developed fast multistate reweighting techniques such as MBAR83 that predict
properties in the neighborhood of parameters for which simulation data has already been collected, using only
energy evaluations in the new parameter sets with the previously sampled configurations. This allows physical
properties for new parameter sets to be reliably estimated using up to three orders of magnitude less
computational effort than the naı̈ve approach, allowing rapid searches through parameter space3;84–86;89. These
reweighting techniques provide estimates of their own statistical uncertainties85 (Figure 6, lower left), allowing
us to trigger additional simulations when parameters move outside the high-confidence region. With each new
simulation dataset, this high-confidence region is greatly expanded (Figure 6, lower left).
Even with the efficiency gains through reweighting, further enhancements are both necessary and feasible. We
have developed a framework to employ surrogate models—cheap approximations of condensed phase properties
given the simulation parameters—that can be fit on-the-fly to reweighted expectations and their uncertainties, fur-
ther reducing computational cost to optimize or explore parameter space in well-explored regions (Figure 6, right).
These models approximate the parameter-property relationship over previously-explored regions of parameter
space, and can predict when the uncertainty in estimated properties becomes sufficiently large to require new
reweighting calculations or simulations. Our prototype uses Gaussian processes109;110 to converge on optimal
regions of parameter space with a small number of simulations. Thus, an approximate, locally correct, model
is used to drive sampling towards the areas of parameter space with the highest data evidence, falling back to
reweighting, or again to simulations, when the confidence region of the inexpensive approach is exceeded. New
simulations will be performed and the process repeated until the optimization converges.
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Figure 7. The QCArchive will be populated with quantum chemical data suitable for biomolecular force fields using automated
workflows. The QCArchive,68 designed and built in partnership with MolSSI, stores data in the open MolSSI QC JSON schema.116 When
molecules representing novel chemistries of interest are submitted, a number of connected workflows are triggered, such as automated
fragmentation, capping, and multidimensional torsion drives, Hessians, or electrostatic potentials. Portable containerized workflows are run
on pooled available connected computational resources (investigator clusters, cloud computing, and supercomputers). The QCPortal 117

Python tool provides a convenient Python object model that can be used to build various front ends for interacting with the database. While
the QCArchive is intended to be general, force field specific workflows and APIs will be developed with MolSSI as part of this proposal.

Plan: Extend our automated property estimation framework to utilize hierarchical surrogate models. We
will develop a scalable property estimation framework—which computes target physical properties and parameter
gradients for force field assessment and optimization—to enable efficient calculation of condensed phase prop-
erties. Physical property computation protocols will be incorporated via a plug-in framework for easy extensibility
to new physical measurements, with initial properties including densities, dielectric constants, and enthalpies of
mixing of organic molecular liquids and mixtures, as well as host-guest binding thermodynamics for druglike guests.
As we explore higher dimensional spaces using surrogate models, we will also examine polynomial chaos expan-
sions111–115. Hierarchical modeling approaches may fail for sufficiently high-dimensional parameter optimizations.
In these cases, We can perform principal coordinate analysis to identify parameters to collectively optimize, and
those that are relatively uncoupled for independent, iterative optimization. We will work with collaborator Nathan
Baker at PNNL on alternative surrogate model approaches (see letter).
Aim 2: Construct open datasets and databases for next-generation force field development.
Force field parameterization and assessment requires high-quality data. We will therefore curate high-quality, open
datasets that can be used for automated parameterization and validation of force fields.
2A: Construct an open, comprehensive quantum chemical database of high-accuracy, ab initio datasets
for parameterizing small molecules and biomolecules.
Force fields generally rely on quantum chemical calculations for determining torsional potentials, valence terms,
and partial charges. While it has recently become popular to determine some of these terms (such as torsional
potentials and partial charges) in a bespoke manner for molecules of interest in low-throughput applications
such as free energy calculations—where seconds to minutes can be spent to derive parameters for a much
longer calculation—generalizable small molecule force fields that can be applied instantly require large datasets of
quantum chemical calculations from which generalizable parameters can be derived. Typically, these datasets have
been produced at great cost, used once, and then discarded—despite their considerable value to the community
for force field improvements, new force field efforts, and machine learning research .6;71–73

Preliminary data. Working with the NSF-sponsored Molecular Sciences Software Institute (see letter from MolSSI
and Senior Person Daniel Smith), we have built automated workflows to populate the open quantum chemical
database QCArchive68 with data from a small molecule fragmentation, torsion drive, and constrained optimization
energy workflow (Figure 7). All components of this pipeline are built using open source tools whenever possible,
such as MongoDB (high-performance database), FireWorks (workflow engine), Psi4 (high-performance quantum
chemical calculations), and RDKit (cheminformatics). While database instances can be hosted locally (and pri-
vately) by users, MolSSI will provide a public instance of this database for use by both our force field effort and
the broader community, which can utilize large quantum chemical datasets in myriad ways.
Plan: We will populate the open QCArchive with data necessary for building biomolecular force fields,
storing configurations and associated quantum chemical properties (energies, gradients, Hessians, fractional
bond orders, and electrostatic potentials) in the widely-supported MolSSI QC JSON standard.116 We will populate
the database with data relevant to biomolecular force field development using automated workflows (Figure 7),
including: (1) an automated torsion drive workflow98;118 that uses geomeTRIC119;120 for constrained geometry
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optimization and Psi4 for QC single-point calculations; (2) a conformation enumeration and optimization scheme
to compute Hessians for fitting valence forces; (3) an electrostatic potential fitting scheme for deriving improved
charge models, supported by a novel open-source implementation121 that will enable improvements over the
widely-used two-stage RESP.122 To populate the QCArchive, we will process fragment-size small molecules
generated from druglike small molecules, biopolymers, and other biomolecules using a new chemical fragmentation
algorithm123 to minimize disruption of conjugated systems during fragmentation and capping.
The MolSSI QCArchive68 will support public queries for datasets associated with a given small molecule and its
fragments, including specific versioned datasets to allow toolkits to be reproducible. When public users query
for fragment data associated with a new molecule that does not already exist, calculations can be automatically
queued on computing resources coupled to QCArchive via the QCFractal distributed workflow engine,124 which
will include local academic compute resources at our institutions, cloud computing resources, XSEDE, and other
suitable compute grids, with results deposited in the public database and returned when complete.
2B: Compile high-quality experimental datasets of small molecule liquid mixtures relevant to biomolecules.
Nonbonded parameters have largely been derived from experimental data for a modest set of pure organic liq-
uids.37;45 However, a wealth of available experimental data has not yet been exploited. The properties of liquid
mixtures—such as such as excess heats of mixing and excess densities125–128—provide information on diverse
chemical interactions. Recently, we demonstrated how data can be automatically extracted from the NIST Ther-
moML Archive,129 which aggregates high-quality thermophysical data deposited from papers published in multiple
journals, for force field assessment.130 We will extract significantly expanded liquid datasets for parameterization
and assessment, initially focusings on densities, heats of mixing, partial molar volumes, and compressibilities,
expanding to other properties in order of abundance and utility. These datasets have been curated and internally
annotated by NIST scientists for self-consistency and physical validity, a vital step for high-quality force field devel-
opment. The scope is significant; more than 600 unique molecules have measured densities of binary mixtures at
varying conditions, and more than 35,000 measurements are available for enthalpies of mixing. We will also add
new targeted experimental datasets to ThermoML using Bayesian experimental design (Aim 3).
2C: Use automation to create diverse experimental datasets of host-guest binding thermodynamics.
A key goal of computational chemistry is the accurate prediction of protein-ligand binding free energies to guide
drug design. However, multiple issues preclude their direct inclusion in a force field training dataset: these calcula-
tions are very slow to converge8;131 and pose significant challenges aside from force field considerations, such as
the need to model missing loops, select tautomer/protonation states, refine low-resolution structures, and make
modeling decisions regarding crystallographic waters.7 Host-guest systems embody much of the same physi-
cal chemistry,25–28;131 their affinities can rival those of protein-ligand complexes,132–134 and high-quality binding
measurements are possible via ITC and NMR.135–137 Host-guest systems have therefore been widely adopted
as tests of computational models,26–28 and we have shown that host-guest systems provide insights into force
field accuracy and that fitting to host-guest binding can result in improved force fields.138–142 However, there is a
need for increased diversity in the noncovalent interactions probed by host-guest systems in order to provide a
dataset that provides information on the wide range of interactions relevant in protein-ligand binding. While it is
straightforward to select and purchase new guest molecules, diversifying host molecules can be challenging.
Preliminary data. To address this need, we (Gilson lab) have developed new, simple, high-yield synthetic routes
that provide facile access to multiple families of new �-cyclodextrin (CD) derivatives (Figure 8), mono-derivatized
at the wider secondary opening of this host; our preliminary work indicates guest molecules can predominantly
interact with host substituents4;5 making this opening especially appealing for functionalization. In preliminary
studies, we have also successfully mono-derivatized the more tractable primary face, and this affords further
potential for generating diverse host-guest interactions. To date, we have synthesized >16 novel derivatives, some
of which are shown in Figure 8, by routes that provide access to a far wider range of new derivatives. We have
also used isothermal titration calorimetry (ITC) to measure the binding thermodynamics of a guest molecule with
native �-CD and one of these derivatives, confirming that derivatization modulates affinity.4;5

Plan: We will generate a large, chemically diverse dataset of high-quality host-guest binding thermody-
namics. Our facile, one-pot, one-step, CD derivatization routes4;5 provide a strong foundation for the automated
synthesis of a much larger library (low hundreds) of cyclodextrin derivatives. This work will be a close collaboration
of the Gilson lab (synthetic innovation) with the Chodera lab (automated instrumentation). Starting materials will
come from commercial suppliers like Enamine, and reactions will be carried out in open polypropylene plates
overnight at room temperature using small volumes of dimethylformamide (DMF), a polypropylene-compatible
solvent, according to our existing protocols.4;5
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Figure 8. Derivatizing �-cyclodextrin to
generate a library of host compounds.
Automated synthesis will generate hosts
for a large set of binding thermodynamics
measurements against a library of guests
with automated calorimetry. Existing syn-
theses use commercially available mono-
3-amino-�-cyclodextrin4;5 (center) to cou-
ple commercially available reagents to the
secondary face, including peptides.5

Stock solutions will be prepared via a Quantos gravimetric dosing system and
combinatorial reactions conducted in 96-well plates using a low-cost Open-
Trons OT-2 automated pipetting system. Following reaction, excess DMF will
be evaporated using a Genevac HT-4x, and product precipitated, filtered, and
washed with acetone, yielding essentially pure product for characterization
via automated mass spectrometry. Guest molecules will be selected from
catalogs, considering biomedical and pharmaceutical relevance of functional
groups, aqueous solubility, and cost. Host-guest binding assays will be per-
formed with an automated MicroCal PEAQ ITC; as CD derivatives often pos-
sess millimolar solubilities, their complexation thermodynamics can be charac-
terized via high-heat ITC experiments138 to yield thermodynamic parameters
that can be directly computed for use in both force field validation139 and pa-
rameterization.140–142 From a single 96-well plate of diverse synthetic host
derivatives, assayed binding interactions with a panel of small molecule �-CD
ligands can produce a library of thousands of binding measurements for force
field parameterization and assessment. Software will be developed to facili-
tate quality review; to move the data into publicly accessible repositories;100

and to format datasets for use in automated parameterization.
2D: Curate experimental datasets suitable for force field assessment.
We will curate extensive experimental datasets that, while too expensive to
use in parameterization, will be valuable in assessing biomolecular force fields
produced by this and other efforts. In parallel, we will integrate new property computation plug-ins into our physical
property computation pipeline from Aim 1 for each new property class, documenting best practices.
NMR data. We will curate published protein NMR data, including NOEs, through-bond 3J couplings, Lipari-Szabo
S2 order parameters and residual dipolar couplings (RDCs) from the Biological Magnetic Resonance Data Bank
(BMRB),143 expanding on earlier work.144 We will also collaborate with existing force field efforts to incorpo-
rate extensive protein and nucleic acid NMR datasets they have found useful in force field assessment (see
letters),24;66;145 and implement best-practices procedures for computing these NMR observables.
Miniprotein thermostablities. We are working with Gabriel Rocklin (see letter), who is conducting high-throughput
stability studies of thousands of designed mini-proteins,146 to utilize this unique and comprehensive dataset for
protein force field assessment. We will also include melting curves for several small proteins and peptides, such
as the villin headpiece, the helical (AAQAA)3 peptide, Trp-cage, and the CLN025 hairpin, which have been ex-
perimentally obtained using standard techniques such as temperature-dependent circular dichroism and NMR
chemical shift deviations.147–149 We will integrate enhanced sampling methods (such as simulated tempering) into
our physical property computation pipeline to compute miniprotein thermostabilities.
Binding thermodynamics. While protein-ligand binding free energies present a significant challenge for use
in parameterization due to their expense, their inclusion in validation datasets is essential for benchmarking
performance in a critical target application. We will curate systems from protein-ligand validation datasets avail-
able in BindingDB100 to assess force field accuracy in modeling small molecule-protein interactions, along with
more tractable existing host-guest datasets from the literature, and will integrate alchemical binding free energy
calculations (using OpenMM150 or GROMACS151) into our pipeline in order to take advantage of these data.
Community-organized datasets. We will work with collaborators from biomolecular force field communities and
pharma (see letters) to assemble shared datasets of high value across these communities for force field validation,
coordinate with experimental collaborators on ways these datasets might be sourced.
Aim 3: Develop Bayesian inference techniques to provide statistical tools to address key ques-
tions in force field modeling and predict systematic error.
Traditional force field parameterization approaches seek a single model that best fits the training data. However,
a given training set may not tightly constrain all parameters, particularly when parameters covary. For example,
different combinations of ✏ and � values can yield equally accurate hydration free energies.87;152 Importantly, even
if two models are equally consistent with a training set, they may lead to a very different predictions of observables
not well-represented in the training set. Thus, uncertainties in the parameters can propagate to uncertainties in
quantities of interest computed with the force field. A goal of this project is to develop a method that can identify
and quantify such uncertainties, so that a force field’s users can better judge how much confidence to place in the
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results it yields. We are not aware of any other major force field development effort that addresses this issue. We
also aim to bring a rigorous approach to regularization, i.e., to avoiding overfitting, by assigning an appropriate
preference to simpler over more complex models, as models that avoid overfitting tend to be more generalizable.153

We will therefore augment the optimization-based approach of Aim 1 with a new Bayesian approach to force field
parameterization, where force field parameters and model choices are sampled from a posterior distribution. This
Bayesian reframing provides many benefits: (1) sampling techniques that escape local optima and find broader,
more robust fits to the data; (2) a disciplined approach to weighting simpler models more than complex ones;
(3) the ability to use Bayesian model selection to select not only parameters but also structural aspects of the
model, such as functional forms and chemical perception trees for type assignments; (4) a route to predicting the
uncertainty in predictions arising from force field uncertainties; and (5) the use of Bayesian experimental design
principles to identify new experimental data to collect that will maximize the expected information gain.
3A: Develop a Bayesian inference infrastructure for automated parameter sampling, typing de-
termination, physical model selection, and uncertainty quantification
Building on earlier work,3;80–82 we have reformulated the force field parameterization problem to shift from mini-
mizing a target objective function to sampling force field models ✓ from the Bayesian posterior p(✓|D1, ... , D

N

) /
p(✓)

Q
N

n=1 p(D
n

|✓) where D
n

denotes one datum in a set of N training data (physical measurements or quantum
chemical properties), p(✓) denotes a prior over physically relevant parameters, and p(D

n

|✓) is the likelihood the
experimental datum D

n

was measured given force field model ✓. This approach replaces human-crafted weighted
objective functions with likelihood functions that utilize explicit models of experimental uncertainty. Many physical
measurements are already associated with meaningful experimental uncertainties, such as those in the ThermoML
Archive. For experiments lacking uncertainties, or for quantum chemical properties, we will infer the error using
nuisance parameters with weak priors, where consistency with physical measurements drives inference of the
error magnitude—a technique we have previously demonstrated for biophysical experiments.154

We will architect modular software for efficient Markov chain Monte Carlo (MCMC) schemes79 within a Gibbs
sampling framework155 to sample parameters, ✓, alongside reversible jump Monte Carlo (RJMC)156 to sample
hierarchical chemical perception trees and physically motivated functional forms. Bayesian methods naturally
penalize complexity,75–77 ensuring that the sampled typing trees lead to consistency with the training data without
overfitting. This Bayesian approach will replace ad hoc human decision-making about the structure of the force
field with a well-founded statistical method grounded in the data.
Preliminary results: We recently described SMIRKY,2 an RJMC-based approach to automatically sample over
chemical perception trees used to assign valence and nonbonded parameters, and reported its ability to posit
and learn the diversity of human-crafted atom types from existing small molecule force fields.2 In unpublished
work, we have applied this approach to parameterizing a Generalized Born / surface area model based on the
OBC2 model,157 for the SMIRNOFF99Frosst.1 This work used a Langevin integrator158;159 to sample in parameter
space and an RJMC method to sample over chemical perception trees for assigning GB parameters, demonstrating
success in simultaneous sampling over both numerical parameters and typing (Figure 9).
Plan: We will develop a modular infrastructure for Bayesian inference of force field models from experi-
mental and quantum chemical data. This software infrastructure will allow us to plug in various MCMC sampling
schemes that can sample parameters with and without the use of parameter gradients, while also sampling over
typing trees, physical model functional forms (e.g., Lennard-Jones, Halgren160), combining rules, electrostatics
models, and other discrete physical modeling decisions. This infrastructure will take advantage of the efficient
reweighting and surrogate modeling framework for computing physical properties and their parameter gradients
from Aim 1B, to enable sampling over large numbers of parameters. We will integrate our SMIRKY2 scheme to
allow automated elaboration of bond, angle, torsion, and nonbonded types to achieve improved likelihoods on
training datasets, while automatically penalizing complexity to prevent proliferation of types75–77 (Figure 9).
We will develop experimentally-informed data likelihood functions p(D

n

|✓) for the experimental datasets developed
in Aims 1 and 2, allowing us utilize the same datasets to sample families of force field models from the posterior
✓ ⇠ p(✓|D). The spread of predictions from by these sampled models can be used to estimate the systematic error
in predictions made by the force field,3;80–82 error typically neglected when estimating prediction uncertainties.
To allow these error estimates to be carried out efficiently for predictions of new physical properties made with
our Bayesian-derived force fields, we will create tools to run simulations with a single central set of force field
parameters and then apply post-simulation reweighting techniques83 to estimate the spread in the predictions
without any need for additional simulations. This will, for example, give an estimate of the uncertainty a predicted
protein-ligand binding free energy due to the sampled uncertainty in the force field parameters.
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A B C D
Sampled GBSA SMIRNOFF typing trees

A B C D

OBC2

Bayesian

train RMSE 1.8±0.1 kcal/mol 
test  RMSE 1.9±0.1 kcal/mol

RMSE 2.4±0.1 kcal/mol

Figure 9. We can learn chemical perception trees from data using Bayesian inference: learning a simple GBSA model. Left: Using
RJMC, Bayesian inference can sample over SMIRNOFF typing trees and their associated Born radii parameters (top) to fit experimental
small molecule hydration free energies from FreeSolv161 without overfitting; corresponding RMSE of sampled models shown below.
Middle: A comparison of experimental and predicted hydration free energies for published OBC2 (igb=5) with mbondi2 radii 157 (top) and
final Bayesian (bottom) parameters. Right: Sampled SMIRNOFF typing trees illustrate how physically meaningful types are discovered.

3B: Develop Bayesian inference approaches to identify targeted experimental measurements.
Plan: Targeted experimental data collection guided by Bayesian experimental design principles. We will
develop Bayesian experimental design approaches 162–167 to identify sets of feasible experiments that will most
rapidly reduce prediction uncertainties. As a practical test, we will guide the collection of temperature- and mole-
fraction dependent densities and enthalpies of liquid mixtures predicted to minimize predictive uncertainty on
host-guest binding thermodynamics. We will select inexpensive, high-purity (HPLC grade or better) miscible
liquids for automated density measurements (Metter-Toledo DM40 with autosampler) and automated calorimetry
measurements (MicroCal Automated PEAQ-ITC), using the automated gravimetric dispensation system (Mettler-
Toledo Quantos) and liquid handling system in the Chodera lab.
Aim 4: Construct and validate open source, transferable, and self-consistent force fields for
small molecule interactions with complex biomolecular systems.
The machinery and datasets constructed in Aims 1–3 provide a fully automated framework capable of reproducibly
building and assessing consistent biomolecular force fields. We will apply this framework to develop iteratively
refined, versioned biomolecular force fields built from versioned open datasets, with the aim of achieving both
significantly improved accuracy and greater coverage of chemical space for modeling small molecule interactions
with biopolymers and other biomolecules. Key to this approach will be the coordinated and systematic reparame-
terization of small molecule and biomolecular force fields together to achieve superior accuracy in modeling their
interactions. In pursuit of this aim, we will address significant outstanding questions about which factors, such as
choice of physical models and training datasets, impact accuracy and transferability.
Construction of a high-accuracy force field for both biopolymers and general organic molecules in an
integrated manner. The SMIRNOFF chemical perception scheme1 already allows our initial SMIRNOFF99Frosst
small molecule force field1—which covers the chemical space of relevance to biomolecules—to apply complete
valence parameters to biopolymers and other biomolecules. Using this as a starting point, we will use training
datasets drawn from Aim 2 that inform both small organic molecule and biopolymer properties—as well as other
specialized solvent and biomolecule datasets (such as lipid NMR data from NMRlipids64)—to simultaneously
optimize all parameters and refine the chemical perception trees to achieve high accuracy and broad coverage.
Our aim is to produce a general force field that can cover standard biopolymers, covalently modified or nonnatural
organic amino or nucleic acids, biomolecules like lipids and carbohydrates, and be consistent with pharmaceutically
relevant small molecules and arbitrary solvents.
ForceBalance optimization. Initially, we will employ ForceBalance94;168 to minimize an error function balancing
fits to quantum chemical and experimental data, utilizing the infrastructure in Aim 1. Fitting of valence terms will
largely be driven by quantum chemical 1D and 2D torsion drives, minimized geometries, vibrational modes, and
valence force constant data generated in QCArchive (Aim 2A). Fitting of nonbonded terms will primarily be driven by
experimental datasets curated in Aims 2B/2C: building on our earlier work,130 we will use densities, static dielectric,
heat capacities, partial molar volumes, and enthalpies of mixing for pure and binary mixtures (including water)
near biologically-relevant temperatures and pressures extracted from the NIST ThermoML Archive.169;170 These
datasets subsume those we recently used to develop recent protein98 and water94;168 force fields. Host-guest
thermodynamics can also be incorporated since parameter gradients of binding free energies and enthalpies are
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available by simple post-processing of simulation trajectories for free and bound species. To accelerate parameter
optimization, we will use both reweighting and hierarchical surrogate modeling (Aim 1B).
Automatically learning chemical perception trees. After developing the Bayesian framework in Aim 3, we will
revisit the force field parameterization tasks above. We will use the likelihood functions discussed above to account
for reported experimental error, while quantum chemical data will use inferred nuisance parameters to account
for error in quantum chemical energetics. Using the RJMC framework from SMIRKY (Figure 9), we will introduce
sampling over chemical perception trees to increase or decrease the number of parameters independently used
for each valence and nonbonded term (bonds, angles, torsions, impropers, Lennard-Jones) in addition to the
parameter sampling, in a matter similar to the GB parameter type data presented above. Because the Bayesian
approach automatically penalizes complexity, this procedure will naturally balance the goals of achieving a good
fit to the data while avoiding undue complexity. We will infer what the natural number of types is for each class
of interactions, explore how this varies as training datasets of different compositions are used during fitting, and
identify how generalizability (as judged by the validation dataset, described below) is impacted by complexity.
Learning new charge models. Initially, we will use a specific partial charge model adapted from the widely
popular AM1-BCC171;172 modified to apply to arbitrary amino acids (or variants) by capping them, charging the
resulting molecule, zeroing charges on the caps, and scaling the resulting charges to ensure the residue retains
integral charge. In subsequent experiments, under the guidance of collaborator Bayly (original developer of RESP
and AM1-BCC, see letter), we will improve AM1-BCC by optimizing bond charge correction (BCC) parameters
using training datasets. The Bayesian RJMC approach allows us to introduce additional discrete model choices
beyond chemical perception trees: For example, we will use SMIRKY to determine which BCCs should be present,
as well as which fast semiempirical method (e.g., AM1 vs PM3) is best supported by data. We will continue to
explore new charge models such as those based on IPolQ approach (see letter from Senior Personnel Cerutti).
Prediction of systematic error. The Bayesian approach will allow estimates of properties to include force
field uncertainty estimates which reflect the uncertainty in the underlying parameters given the limited train-
ing dataset3;80–82 (Aim 3). We will systematically explore the fidelity of this estimate by determining how well the
force field is able to predict its own systematic error on validation data or held-out training data.
Comparing physical functional forms. Bayesian inference allows comparison of statistical evidence for different
families of force field models via Bayes factors,173 with data-driven decisions for each modeling choice, even if
model families possess different numbers of parameters (Figure 9). We will use this strategy to investigate (initially
with subsets of the experimental data) the statistical support for alternative van der Waals functional forms, partial
charge models, selective multipoles, selective off-center charges, site polarizability models, and deep learning
models to replace valence terms. For example, this process will allow us to directly compare fixed-charge and
polarizable (both point dipole and Drude) models fit to identical datasets, comparing computational cost, accuracy,
and whether the data justifies the increase in number of parameters for any given dataset.
Assessment datasets. The scalable physical property estimation framework developed in Aim 1 will be used to
assess our force fields, and existing force fields, where coverage permits, against physical property datasets from
Aim 2. A fraction of each dataset used in training will be withheld for use in assessment, and physical datasets
too costly to use within parameter optimization iterations will be reserved for assessment. Assessments will be
performed for every versioned force field release and presented publicly for comparison with existing force fields.
Long-term outlook. This project will yield new technologies that will drive the development of new generations
of force fields employing both standard and novel functional forms, via both traditional optimization and Bayesian
approaches, spanning small molecules, proteins, carbohydrates, nucleic acids, lipids, and biologically-interacting
molecules. This capability to automate force field development means that, as training datasets grow, so will force
field accuracy. These tools will also provide needed insight into which changes in functional form will yield the best
improvements in accuracy, allowing the field to manage the tradeoff between complexity and computational speed.
By creating an open infrastructure and nucleating a community around open training and validation datasets, we
will also enable other researchers to construct, extend, and refine transferable and self-consistent physical force
fields for biomedically relevant compounds. The resulting ongoing improvements in accuracy will help researchers
worldwide develop a deeper understanding biomolecular function and speed the discovery of new therapeutics.
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RESOURCE SHARING PLAN
Numerous useful and shareable resources will be generated during the course of these project, all of which will
be made freely available to the research community at the earliest opportunity. The Open Force Field Initiative
website [http://openforcefield.org] will act as an index to the various resources we freely provide.
Software. All computer software developed for this project will be free and open source, licensed under a permis-
sive Open Source Initiative (OSI) approved license, such as the MIT license. Software will be made available on
online collaborative public code repositories such as GitHub [http://github.com], where codes produced by our
collaboration are currently hosted [http://github.com/openforcefield/].
We aim to develop modern and open software as part of this project. Specifically, by modern, we mean

• Written in Python, a language current students can easily understand, modify, and quickly become proficient
with; not written in Fortran, C, or other languages with larger barriers to productivity

• Modular and extensible, where adding new capabilities requires minimal effort
• Making use of well maintained conda-installable libraries when available to minimize maintenance burden

throughout the software life cycle
• Hewing to open standards whenever possible to minimize specialized frameworks, APIs, or formats develop-

ers must learn
• With a focus on creating simple, easy to use APIs
• Portable to various systems without recompilation
• Accompanied by extensive documentation describing the theory underlying the software and the APIs
• Clearly described best practices that we will simultaneously engage the community to describe in journals

such as the Living Journal of Computational Molecular Sciences (LiveCoMS)
• Accompanied by tutorials that clearly describe common use cases conforming to these best practices

and by open, we mean
• Free (libre) open source, as described above
• Developed on a public community oriented platform like GitHub, with a community organized mindset
• Welcoming of new users and developers, and open to contributions from others
• Easily extensible by others for their own applications

Force fields. All force fields generated by the project will be made available through revision-controlled public
repositories such as GitHub [http://github.com] under the Creative Commons By Attribution 4.0 (CC-BY) license.
As an example, smirnoff99Frosst can be found at https://github.com/openforcefield/smirnoff99Frosst
Preprints. We aim to report our progress rapidly via preprints on and http://chemrxiv.org, which we aim to
publish as open-access publications in journals when feasible (with emphasis on complete inclusion of all primary
data). We will make every attempt to also release materials and data as they are generated, ensuring all reported
data, software, and parameter sets are available prior to publication.
Quantum chemical datasets. The public quantum chemical database (QCArchve68) will be made publicly acces-
sible for retrieval access in collaboration with the Molecular Sciences Software Institute (MolSSI). Public users will
be able to perform compute-intensive requests (such as the generation of new quantum chemical torsion profile
datasets from submitted molecules) as resource availability permits.
Experimental datasets and materials. All experimental datasets—including primary data, where applicable—
will be made available through online, version-controlled repositories such as GitHub [http://github.com], the
Open Science Framework [http://osf.io], and FigShare [http://figshare.com]. Affinity measurements will
be submitted (along with primary data, when possible) to BindingDB [http://www.bindingdb.org]. All datasets
generated by this collaboration will be made freely available under the Creative Commons By Attribution 4.0
(CC-BY) license. In addition, we will make all reasonable effort to meet requests for samples of our synthetic hosts
and any other unique materials generated during this project.
Simulation datasets. Simulation and model datasets will be shared, when practical, through the online repos-
itories such as GitHub [http://github.com], the Open Science Framework [http://osf.io], and FigShare
[http://figshare.com].
3D printable laboratory parts. Numerous useful 3D printed parts are fabricated in the Chodera laboratory to
aid in our automation research projects. Electronic printable versions of these parts are made available on both
[http://www.choderalab.org/3dparts/] and the NIH 3D Print Exchange [http://3dprint.nih.gov].

Contact PD/PI: Shirts, Michael R

Resource Sharing Plan(s)                                                                                      
 Page 232


