
PROJECT SUMMARY/ABSTRACT
The study of biomolecular interactions and design of new therapeutics requires accurate physical models of
the atomistic interactions between small molecules, biological macromolecules, and their complex biomolecular
environments. Over the last few decades, molecular mechanics force fields have demonstrated the potential for
physical models in quantitative biophysical modeling and predictive molecular design in drug discovery, vaccine
development, and other discovery areas. However, despite substantial work by many researchers, significant
technology gaps still exist in our ability to build systematically improvable force fields that achieve high accuracy
and broad coverage of NIH-relevant chemistry, that self-consistently model heterogeneous biomolecular systems,
and that can be broadly applied across a range of high-performance software packages.
This project builds on the success of the Open Force Field Initiative in its first project period, which developed open
software infrastructure and open datasets, and built two successively improving generations of small molecule
force fields (Parsley and Sage) whose quality and breadth have already led to significant adoption in academia
and industry.
In this new project period, we aim to fully mature this technology, building new generations of accurate quantitative
biomolecular force fields for molecular design in chemical biology and drug discovery, self-consistently covering
nearly all NIH-relevant bioorganic chemistry. In Aim 1, we will extend our infrastructure to model essentially all NIH-
relevant bioorganic chemistry using technologies that significantly expand generalizability and transferability. In
Aim 2, we will enable new force field science by developing open-source technology capable of using new classes
of experimental reference data to train and assess force fields and alternative functional forms in a rigorous and
data-driven manner. In Aim 3, we will develop next-generation software infrastructure that accelerates force field
parameterization and enables Bayesian inference to assess systematic error in predictions made with OpenFF
force fields. In Aim 4, we will maximize the impact these developments have on the field by building communities
around the establishment and deployment of high quality force fields, the construction and curation of open
reference datasets, and the use of these datasets to train and assess force fields.
This research is significant in that the technology developed in this project has the potential to radically transform
the study of biomolecular phenomena by providing highly accurate force fields with exceptionally broad chemical
coverage via fully consistent parameterization of bioorganic chemistry. This will greatly improve our ability to
study diverse biophysical processes at the molecular level, and to rationally design new small-molecule, protein,
and nucleic acid therapeutics. This approach will bring statistical rigor to the field of force field construction and
parameterization by providing greatly enhanced capabilities to make data-driven decisions, and enabling it to
become a rigorous and reproducible process using a fully open infrastructure and datasets.



SPECIFIC AIMS
Computer simulations have become a critical tool to study molecular mechanisms in disease and health and to
aid in the discovery of new therapeutics. However, the accuracy of molecular simulations has remained limited
by approximations and inaccuracies in the molecular mechanics force fields they are built on. While recent years
have seen enormous progress in computer hardware, data availability, and machine learning (ML) methods, force
field science and infrastructure has yet to take full advantage of these opportunities.
We established the Open Force Field Initiative (OpenFF) to exploit these opportunities, aiming to produce mod-
ern, open, extensible infrastructure to create increasingly accurate force fields for small organic molecules and
biomolecules and to curate the open quantum chemical and experimental datasets necessary to build and evalu-
ate them. OpenFF force fields, downloaded over 200K times, have systematically improved modeling accuracy,
and our work to date has generated 28 publications describing our open approach to modular, generalizable,
self-consistent parameterization of biomolecular systems.
In this renewal, we will dramatically expand the ability of the OpenFF ecosystem to model with increasing accuracy
the full range of chemistries relevant to the study of biomolecular mechanisms and drug discovery, incorporating
novel data science and ML approaches into the physics-based modeling toolchain, via the following Aims:
Aim 1: Produce a transferable FF infrastructure to model virtually all NIH-relevant bioorganic chemistry.
We will extend our self-consistent parameterization approaches to dramatically expand the domain of applicability
of OpenFF force fields by enabling them to assign high-quality transferable parameters to virtually all NIH-relevant
bioorganic chemistry. Our new force fields cover virtually of all bioorganic molecules (biopolymers and small
molecules) including nucleic acids, carbohydrates, lipids, organic polymers, and complex mixtures—in addition to
druglike small molecules and proteins currently supported by OpenFF. Our aim is to enable rapid, facile param-
eterization of complex heterogeneous systems (such as the ribosome or lipid encapsulated nucleic acids) and
those including covalent modifications or conjugation (such as post-translational modifications, covalent ligands,
and conjugated dyes), free of bespoke steps. We will achieve improved transferability by integrating both direct
chemical perception (Subaim 1.1) and new machine-learning techniques that describe chemical environments
using graph neural networks (Subaim 1.2)—approaches de-risked by prior work.
Aim 2: Enable and execute new force field science, systematically addressing alternate functional forms
and the utility of experimental reference data. We will build a plugin infrastructure to rigorously evaluate the
benefit provided by alternative functional forms for modeling bioorganic systems, accelerating progress within our
own effort and in the community. Among other models, we will evaluate virtual sites, techniques for modifying
torsions based on local conjugation, coupling of bonded potential terms, and neural net valence potentials (Subaim
2.1). We will build infrastructure to compare force fields using new data sources we have not yet tapped, including
small molecule crystal diffraction data, osmotic and activity coefficients, and additional biomolecular experiments
(Subaim 2.2).
Aim 3: Create next-generation tools for novel approaches to fitting force fields. We will migrate our force
field fitting infrastructure to use well-supported, parallelizable machine learning frameworks that support automatic
differentiation, hardware-accelerated computation, and the integration of machine learning valence potentials
(Subaim 3.1). We will integrate surrogate models capable of dramatically reducing the number of molecular
simulations required for force field parameterization using condensed phase data, which will in turn allow us to
develop Bayesian model selection tools to make force field selection more rigorous (Subaim 3.2). We will build
this infrastructure so it is capable of incorporating aspects of machine-learned potentials that are fast enough for
large-scale biomolecular simulation (Subaim 3.3).
Aim 4: Build force field communities to maximize impact in biophysics and drug discovery. To expand the
integration of OpenFF tools into biomolecular workflows, we will build communities of software infrastructure
(Subaim 4.1) focused on extending interoperability with molecular simulation packages, integrating existing force
fields into OpenFF, and enabling facile integration of OpenFF tools into existing workflows. To provide the prac-
titioners with the datasets they need, we will build communities of data (Subaim 4.2), assembling larger and
more diverse data sets, including quantum mechanical, physical property, and organic crystal datasets, as well as
the tools for accessing them. To equip users with best practices for assessment, we will create communities of
validation (Subaim 4.3), building on our success in developing community best practices for protein force field
validation by establishing best practices for nucleic acids, lipids, sugars, and other important biomolecules.
Our new infrastructure and force fields will continue to transform the rapidly growing field of biomolecular modeling
through significantly enhanced transferability, accuracy, and ease of use in a robust, data-enabled, automatable
way, enabling research and discovery communities to meet modern challenges in biophysics and drug discovery.



PROGRESS REPORT (3/1/2020–3/5/2023) [Project start date: 3/1/2020 / Project end date: 2/29/2024]
Key results of this period included two major OpenFF force field generations, Parsley (1.x) and Sage (2.x).
These force fields followed an extensive campaign of generating and curating training data and constructing bench-
mark assessments. Parsley1 marked the first complete refit of all valence parameters of a force field based on
direct perception of valence parameter types. This dramatically improved accuracy for small molecule geometries
and energetics1 relative to our starting point, SMIRNOFF99Frosst.2 Sage, the second generation, incorporated
an expanded quantum chemical training dataset along with co-optimization of Lennard-Jones (LJ) terms fit to
condensed-phase properties, and provides a further improvement in accuracy.3 The successful development of
these force field releases was due to specific scientific and infrastructure advancements in the four aims:
Progress on Previous Aim 1: Create a modern, open software infrastructure for automatically generating
and validating force fields and utilizing them broadly in modeling packages.

Figure 1. OpenFF has built an open source software and
data ecosystem for force field optimization.

We developed an extensive force field optimization frame-

work by adapting and extending ForceBalance4 to re-fit force
fields to numerous quantum chemical objectives using data
we generated and disseminated via the public QCArchive
repository5 (Figure 1). This framework was used to fit Pars-
ley1 and all subsequent force field versions. To incorporate
condensed phase physical property data, we built OpenFF
Evaluator, a framework for efficient, automated calculation of
these properties and their parameter gradients.6 In parallel,
we curated condensed phase property datasets appropriate
for refitting nonbonded parameters. We demonstrated that
mixture properties—specifically, heats of mixing and mixture
densities from the NIST ThermoML Archive7–9—can pro-
duce higher quality force fields than pure condensed phase data typically used in force field parameterization.10

Mixture property data are much more abundant than pure property data and free of issues with phase-dependent
molecular repolarization. We used Evaluator and ForceBalance11 to fully refit Lennard-Jones (LJ) and valence
parameters for Sage.3

In pursuit of expanded generalization, we explored an alternative to our SMIRKS-based SMIRNOFF parameter as-
signment strategy, and developed a prototype end-to-end differentiable machine learning infrastructure (Espaloma)
for force field parameterization (Figure 2).12 Espaloma uses a graph convolutional neural network (GCNN) to
assign continuous multidimensional vectors (or embeddings) representing atomic environments, rather than dis-
crete atom or parameter types. These vectors can be fed to a modular neural framework for assigning parameters
to atoms, bonds, angles, and torsions. This enables the entire force field typing and parameterization framework
to become a fully continuous optimization problem, with smooth parameter interpolation between environments.
This has the benefit of eliminating the challenges to Bayesian optimization encountered in our initial efforts us-
ing mixed discrete/continuous Bayesian optimization.12;13 We used this strategy to produce a prototype fast,
conformation-independent, drop-in replacement for AM1-BCC partial charges using GCNNs (EspalomaCharge)
that self-consistently assigns high-quality, AM1-BCC-equivalent charges to all components of a biomolecular sys-
tem. These approaches scale to thousands of atoms in fractions of a second, enabling fully consistent force fields
to parameterize post-translational modifications, covalent ligands, covalently modified biomolecules, and other
complex heterogeneous biomolecular systems.14

Progress on Aim 2: Construct open datasets and databases for next-generation force field development
Quantum chemical benchmark sets: We compiled QC benchmark datasets and used them to assess the quality
of our force fields on broad datasets of pharmaceutical interest relative to quantum chemical data. Working
with pharmaceutical industry collaborators, we compiled industry datasets for public release, deposited them in
QCArchive, and built infrastructure for automated benchmarking of force field quality. On public data outside our
training dataset, Sage emerges as the best public/open small molecule force field in terms of molecular
geometry and energies3 (Figure 3); a pharmaceutical industry benchmark reached similar conclusions on
proprietary internal datasets.15 To address the lack of additional open quantum chemical datasets with extensive
coverage of relevant biomolecular space and equilibrium geometries for force field construct and assessment, we
generated a large (⇠1.1 million conformations) dataset of equilibrium geometries and quantum chemical energies
with extensive coverage of peptides, druglike small molecules, and fragments of biomolecules at both high (!B97M-
D3BJ/def2-TZVPPD) and standard (B3LYP-D3BJ/DZVP) levels of theory in collaboration with OpenMM.16



Geometries Sublim. Heat
Force Field Mean

✏
Mean
RMSD

R2 RMSD

OpenFF Sage (2.0) 1.52 0.31 0.65 4.9
OpenFF Parsley (1.3) 1.82 0.28
GAFF 1.8 1.68 0.33
GAFF 2.1 1.71 0.43 0.58 4.85
CGenFF 2.13 0.47 0.40 4.49
OPLS-AA 2.36 0.83 0.53 5.52

Table 1. OpenFF Sage yielded highest accuracy across small
molecule force fields tested, in terms of crystal geometries and en-
ergetics. Geometries are assessed for crystal simulations of 13 amide
or peptidic organic compounds. Heats of sublimation are computed
for crystal structures of 280 compounds. ✏ is a metric of accuracy of
the lattice, RMSD (Å) reflects time-averaged deviations of all non-H
interatomic distances more than 3 bonds apart and 4 Å or less in the
reference crystal structure. Standard errors of the mean are 0.42–0.48
for mean ✏ and 0.08–0.17 for mean RMSDs (0.40 for OPLS-AA).

Quantum chemical methodologies: Systematic inves-
tigation determined the level of quantum chemical
theory (B3LYP-D3BJ/DZVP) providing an optimal bal-
ance of speed and accuracy for dataset generation.18

In fitting fully consistent force fields to this data, we
demonstrated that reasonable torsion profiles could
be extracted from optimization trajectories initiated
from enumerated conformers, avoiding computation-
ally expensive systematic torsion drives.12 We demon-
strated inclusion of vibrational frequency data resulted
in a degradation of force field quality, likely due to dif-
ficulties in matching vibrational frequencies between
internal coordinate systems.3 We also found deriving
initial parameters directly from QM using the modified
Seminario method, rather than optimizing from a prior
force field, results in higher quality force fields.19

Condensed phase datasets: To incorporate physical properties into our fitting infrastructure, we curated data from
the NIST ThermoML repository7–9 and the Minnesota Solvation Database,20 making these datasets programmat-
ically accessible for automated benchmarking efforts through the OpenFF Evaluator API.6

Organic crystal data: We have also automated the simulation of periodic small molecule crystal structures from
the Crystallography Open Database (COD)21;22 and used these tools to compare four FFs, including two from
OpenFF.23 In all these measures, Sage demonstrates high accuracy, surpassing other public force fields (Table 1).
Progress on Aim 3: Develop Bayesian inference techniques to address key questions in force field physical
modeling and predict systematic error
Automating SMIRNOFF type refinement: We have shown our approach to automated fitting of SMIRNOFF force
fields can provide remarkable accuracy, but the choice of SMARTS classes defining these environments re-
quires human experts. We developed tools to automatically suggest useful classes via a parsimonious search of
bit-mapped molecular graphs.24 Preliminary results suggest higher accuracy force fields with lower complexity
than manually-defined types can be built, as suggested by other collaborations25 We produced new general,
transferable force fields from scratch in addition to extending and improving preexisting typing schemes.24

Fast surrogate models for optimization: One challenge of automated force field training is the expense of performing
large numbers of molecular simulations. We used Gaussian process surrogate models fit to match physical prop-
erties predicted by simulation-only26 force field optimization. We found that optimizations using these surrogate
models allows rapid escape from local minima while maintaining equivalent levels of efficiency to simulation-only
approaches.
Bayesian model selection: Another challenge is the difficulty of deciding whether a given change in force field
model is truly an improvement. We showed how Bayesian inference can be used in a quantitative way to decide
the utility of two different levels of theory in a study of the phase equilibria of diatomic molecules.27 Although the
approach is too expensive to apply to molecular simulations of physical properties directly, high-accuracy surrogate
models such as those described above can make Bayesian analysis possible, improving such decisions as the
number of parameter types necessary or the utility of polarizability in a more quantitative manner. In addition,
the GCNN framework described in the Progress Report above will greatly simplify the development of Bayesian
inference technologies in future work by changing a complex discrete inference problem to a continuous one.
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Figure 2. Graph convolutional neural networks (GCNNs) can significantly improve force field accuracy and generalizability. (A)

Our GCNN prototype strategy (Espaloma, schematically shown in Figure 5) can produce MM force fields capable of reproducing quantum
chemical energies significantly better than legacy force fields.12

(B) Relative binding free energy calculations with Espaloma small molecule
parameters produce significantly lower error with experiment (RMSE 0.47 [95% CI: 0.32, 0.68] kcal/mol) 12 than matched calculations with
Schr odinger’s FEP+ (RMSE 0.93±0.12 kcal/mol), which use a proprietary force field.17



Figure 3. Benchmarking of OpenFF shows continuous improvement and competitive performance. (A) Small molecule geometries
show systematic improvement with each OpenFF release. (B) Binding free energy benchmarks are competitive with commercial force
fields. (C) Each generation of OpenFF shows significant improvement in binding free energy benchmarks.

Progress on Aim 4: Integrate the results of Aims 1–3 to construct and validate open source, transferable,
and self-consistent force fields for small molecule interactions with complex biomolecular systems
New force fields integrating multiple improvements: We used the developments in Previous Aims to produce
iteratively refined, versioned force field generations Parsley (1.x) and Sage (2.x). These significantly improved
accuracy and coverage of chemical space for modeling drug-like small molecules3;15 (Figure 3). In an industry-led
benchmark, these OpenFF force fields, based on our SMIRNOFF chemical perception scheme,28 successfully pa-
rameterized 99.7% of molecules in internal datasets and delivered clear improvements in accuracy of reproducing
quantum chemical energies and geometries over public force fields.15

Extensive, consensus force field assessments: We evaluated the quality and transferability of our force fields in
several ways. As Sage was a dramatic refit of nonbonded terms, it carried the risk that optimizing LJ parameters
away from AMBER-family LJ parameters might result in reduced accuracy in binding free energies when used with
AMBER protein FFs. To assess this, we carried out protein-ligand binding free energy benchmarks3;19 and found
we either maintained or modestly improved accuracy3 (Figure 3). Sage also incorporated dramatic improvements
to our methodology for selecting quantum chemical datasets for training, including automated methods for selecting
diverse chemistries exercising the same parameters in order to ensure robustness and generality.3

Large user base and industry impact: Our tools and force fields are now widely used; our core toolkit has been
donloaded >174,000 times,29 and our force fields >204,000 times.30 In addition to direct applications within
the pharmaceutical industry, they are heavily used by software vendors, including OpenEye (Orion), Cresset
(Flare), and other tool builders (e.g. OpenMM, OpenFE, AstraZeneca Icolos, MolSSI QCEngine, qubekit, Open-
BioSim/BioSimSpace, and MolSysMT; see Letters).

Figure 4. Our preliminary OpenFF 3.0 (Rosemary) protein
+ small molecule force field is stable over µs timescales.
Color traces show RMSD of 3 replicates relative to NMR solution
structure of GB3 (PDBID: 1P7E31) in explicit-solvent MD.

Self-consistent protein:small molecule force fields with

SMIRNOFF parameter assignment: We have built a pre-
liminary version of OpenFF v3.0.0 (Rosemary) that self-
consistently parameterizes small organic molecules and
proteins, currently supporting the canonical 20 amino acids
and protonation/tautomer variants. Rosemary supplements
the Sage training set with quantum chemical (QC) data
for capped amino acids and tripeptides, and uses a library
of self-consistent AM1-BCC32ELF1033 charges for amino
acids. Preliminary evaluation of Rosemary against a test set
of QC torsional scans for small peptides yielded an RMSE
of 2.0 kcal/mol, compared with 3.6 kcal/mol for Amber ff14SB,34 with no loss of accuracy (relative to Sage) on QC
small molecule benchmarks. It shows similar performance as ff99SB for experimental NMR J-couplings over 500
ns aqeuous simulations of 13 representative peptides. Initial tests also show that the protein parameters provide
stable µs simulations (Figure 4). We organized a community-driven overview of best practices for protein force
field assessment35 and are using these to drive further assessment.
Self-consistent protein:small molecule force fields with GCNN parameter assignment: We also produced a pro-
totype force field for proteins and small molecules using our GCNN framework (Espaloma), using similar QC
datasets as Rosemary. This experimental force field demonstrates significant improvements (Figure 2B) over
existing public force fields and significant reductions in error in protein:ligand alchemical free energy calculations.12

Bespoke tailoring for individual molecules or molecule sets: Our infrastructure work also allows easy development
of tailor-made force fields for particular applications. For example, we partnered with Danny Cole to develop
BespokeFit,36 which allows custom refits of torsion parameters to provide especially high accuracy on specific
chemistries of interest. This tool is already being used by several pharmaceutical companies and Cresset.



SIGNIFICANCE
Force fields now can drive discovery, yet still require better accuracy. Atomistic molecular simulations of biomolecules
are growing ever more powerful and their impact in the biomedical sciences continues to expand.37–39 In drug dis-
covery, they are used to design orthosteric inhibitors,40 discover transient allosteric binding pockets in proteins,41

and improve the physical properties of biopharmaceuticals.42 With increasing accuracy and chemical coverage,
they could be used even more broadly, e.g., to predict off-target binding and resulting side-effects, or to design a
ligand that specifically inhibits a targeted set of kinases or kinase mutants.43;44 Simulations are frequently used to
augment structural biology methods such as cryo-EM, NMR, and X-ray crystallography to elucidate the structures
of macromolecules and their assemblages.38;45 Given biomolecular structures, simulations are often used to help
elucidate function and mechanisms of disease,46 providing insights that feed into drug discovery.
However, we cannot yet design a ligand for a protein of known structure completely in silico, have a synthetic
chemist make it, and find it binds with nanomolar affinity.47 As computers grow faster, the remaining error increas-
ingly stems from inaccuracy in the potential energy function, or force field (FF), used to model interactions within
the biomolecular system:48 These errors persist when the same methods used for computing free energies of
protein-ligand systems are applied to much simpler host-guest systems—miniature receptors for which thorough
sampling can be convincingly achieved.49–52

Many biomedically relevant systems are frustratingly difficult to model; we aim to change this. Heterogeneous
systems remain challenging to simulate because of obstacles and uncertainties associated with assigning high-
quality, self-consistent force field parameters. For example, parameterizing a lipid-encased mRNA nanoparticle
currently requires major effort. Similar challenges arise for proteins with postranslational modifications, nonstan-
dard residues, or covalent ligands. Generating force field parameters for heterogeneous systems is technically
difficult, as is ensuring quality and consistency. Many chemistries also lack sufficiently high quality FFs—despite
significant progress,53–56 nucleic acid and carbohydrate FFs have received less attention than protein force FFs,
and greater accuracy is needed to accurately model combinations, e.g., protein-DNA (e.g., transcription factors57)
and protein-RNA-DNA (e.g., CRISPR58;59) interactions, and glycoproteins. Even protein force fields still require
improvement60;61 for simulation technologies to fulfill their ultimate promise of reliable simulation and design.
We will address these challenges by building accurate force fields that are, by design, self-consistent across

molecule classes (e.g. protein, small molecule, nucleic acid), coupled with well-engineered software toolkits for
force field optimization, assessment, and straightforward application to virtually the full array of biomedically
relevant molecules. By self-consistent, we mean that parameters of the Thr sidechain should be very similar to
those of ethanol, while lipid alkyl chains should be similar to those of small molecule alkanes, with any differences
in parameters due to entirely to differences in chemical context. Likewise, peptidic moieties encountered in any
molecule should the same parameters as those moieties in proteins, up to any changes in the chemical context.
This work will directly enable simulations to have far greater impact in biomedical science and drug design. Perhaps
even more importantly, the infrastructure and tools generated by this fully open-source project will empower other
researchers to do their own force field research and development, and we will build research communities that will
help others make best use of our results and technologies.
Our infrastructure provides a rigorous way to evaluate and integrate advanced functional forms. We leverage
automated parameterization, consistent datasets, and community-driven best assessment practices to rapidly and
reproducibly test new approaches and determine the best path forward towards dramatically improved accuracy
and transferability. This rigorous, reproducible approach provides the best way to weigh the benefits of proposed
new approaches and functional forms, whether from inside our project or from the broader community, and thus
to drive well-supported improvements in successive force field releases.
Our work impacts the entire molecular modeling community by improving the accuracy and domain of applicability

of FFs and empowering researchers to independently explore and advance FF science. The community already
recognizes this significance and is incorporating our FFs into a wide range of modeling tools and used across a
broad swath of the pharmaceutical industry (see Letters).
INNOVATION
This project will yield the first open, scalable, data and software infrastructure designed to reproducibly build, apply,
and assess, statistically robust force fields. It introduces significant innovations at multiple levels.
New ways to describe chemical environments for parameterization. Our novel force field approaches use more
descriptive and robust ways to perceive atomic environments for parameter assignment. Traditionally, atom types,
crafted by human experts, are used to assign force field parameters. This approach hampers extension into new



areas of chemical space, due to proliferation of parameters and consequent opportunities for human error.28 For
example, in the atom-typing paradigm, creating a new torsion type requires defining a new atom type, which then
generates a need to define its LJ parameters, as well as the parameters for all bonds and angles that involve
the new atom type.28 Our innovative direct chemical perception approach, the SMIRKS Native Open Force Field
(SMIRNOFF) specification,28 abolishes this problem by separately typing each FF term directly from the chemical
graph. Here, we will further innovate by building on data-driven methods for parsimoniously determining the
most informative SMIRNOFF types, as well as novel parameter assignment technologies that use continuous,
rather than discrete, representations of atomic environments using graph convolutional neural networks (GCNNs)
that preserve chemical equivalences and symmetries (see Progress Report). These new methods promise to
drastically improve our ability to match chemical space to force field parameters while also enabling Bayesian
inference (Subaim 3.2) by removing the challenges of optimizing over discrete types.12;13

Force fields designed from the ground up for all bioorganic molecular systems. A second innovation is self-
consistently derived force field parameterization across the full range of biomolecular classes, including small
molecules, proteins, lipids, carbohydrates, and nucleic acids, and critical solvents like water fit to solvent-solute
properties. This will enhance accuracy for data-limited chemical domains by leveraging data for related chemistries,
and extend generalizability and transferability to new chemistries.
Use new types of chemical data to optimize and assess force fields. We will integrate hitherto unused or un-
derused classes of chemical data into our fitting and assessment methods to enhance force field accuracy and
generalizability. These include osmotic and activity coefficients (particularly useful for charged species in solution),
speed of sound measurements, octanol/water partition coefficients, and small molecule X-ray crystal data. We will
generate and curate new quantum chemical data sets, broadening coverage of chemistries for drug-like molecules
and providing focused datasets needed to accurately describe biomolecules such as nucleic acids and sugars.
Rigorous validation of new physics in FFs. Our new infrastructure will provide built-in support for a broad range
of physical interaction potentials well-supported by simulation packages but not extensively exercised by modern
biomolecular force fields, such as virtual (off-atom) interaction sites, class II valence force field terms (e.g., term-
term coupling),62;63 and electronic polarizability. We will also enable integration of machine learning potentials for
short-range interactions to replace valence terms, alongside physical interactions such as long-range electrostatics
and dispersion interactions. Importantly, we will build a modular framework for automated, statistically rigorous,
testing and validation of these potentials, using curated, open datasets.
Bayesian methods for data-driven force field construction and quantifying prediction errors. Although force fields
are rooted in physics, they are fit to a limited quantity of experimental and quantum chemical data. We will leverage
Bayesian inference approaches (Subaim 3.2) to address multiple issues that arise as a consequence. Bayesian
inference enables us to generate multiple parameter sets that fit the data with different probabilities, and can be
used to assess the systematic error in predictions arising from force field parameter uncertainty.64–67 Bayesian
model selection approaches can also bring statistical rigor to assessments of physical modeling choices, functional
forms, mixing rules, and other choices arising in force field construction (Subaim 2.1).27 Our proposed innovations
in continuous typing12 are particularly suited to Bayesian approaches, and promise to enable a new, data-driven
approach to type definitions that avoids traditional by-hand type assignments, which, though chemically rational,
may not be sufficiently descriptive.
Enabling community innovation: A fundamental goal is to create data and software infrastructure that enables
researchers to innovate within force field research and development, exploring novel functional forms and new
data sources. To maximize impact, we will help build topical research communities (Aim 4).

Figure 1. End-to-end di�erentiable molecular mechanics parameter assignment. Espaloma (Extendable Surrogate
Potential Optimized by Message-passing Algorithms) is a modular approach for directly computing molecular mechanics
force �eld parameters �FF from a chemical graph � such as a small molecule or biopolymer via a process that is fully dif-
ferentiable in the model parameters �NN. In Stage 1, a graph net is used to generate continuous latent atom embeddings
describing local chemical environments from the chemical graph. In Stage 2, these atom embeddings are transformed
into feature vectors that preserve appropriate symmetries for atom, bond, angle, and proper/improper torsion inference
via Janossy pooling. In Stage 3, molecular mechanics parameters are directly predicted from these feature vectors us-
ing feed-forward neural nets. This process is performed once per molecular species, allowing the potential energy to
be rapidly computed using standard molecular mechanics implementations thereafter. This approach can be easily ex-
tended to incorporate additional molecular mechanics parameter classes (such as parameters for a charge-equilibration
model [1], point polarizabilities, or valence coupling terms) in a modular manner.

• First, a set of rules are used to classify atoms into atom types that must encode any information about40

the chemical environment that will be used by subsequent steps.41

• Next, bond, angle, and torsion types are determined by the composing atom types.42

• Finally, the parameters attached to atoms, bonds, angles, and torsions are assigned according to a43

table of these parameter classes.44

As a result, atoms, bonds, angles, or torsions with distinct chemical environments that happen to fall45

into the same expert-derived category are forced to share a same set of parameters, potentially leading to46

poor accuracy. Furthermore, the explosion of discrete parameter classes describing equivalent chemical47

environments not only poses signi�cant challenges to extending the space of atom types [17], optimizing48

these independently has the potential to compromise generalizabilty and lead to over�tting. Even with49

modern optimization frameworks [18–20] and su�cient data, parameter optimization is only possible in50

the continuous parameter space de�ned by these �xed atom types, while the mixed discrete-continuous51

optimization problem—jointly optimizing types and parameters—is intractable.52

Here, we demonstrate a the potential for a continuous alternative to discrete atom typing schemes53

that permits end-to-end di�erentiable optimization of both “typing” and parameter assignment, allowing the54

entire force �eld to be built, extended, and applied using standard machine learning frameworks utilizing55

automatic di�erentiation such as TensorFlow, PyTorch, or JAX (Figure 1). We hypothesize that graph neural56

networks (graph nets) have at least equivalent expressiveness with expert-derived typing rules, with the57

advantage of being able to smoothly interpolate between representations of chemical environments. We58

�rst provide experimental evidence of this hypothesis by showing that, with acceptable errors:59
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Figure 5. Aim 1 will pursue two parameter assignment strategies to enable force field generalizion to nearly all NIH-relevant
chemistry. Subaim 1.1 will extend the SMIRNOFF SMARTS-based parameter assignment strategy, while Subaim 1.2 will explore graph
convolutional neural network (GCNN)-based parameter assignment strategies to achieve superior generalization and interpolation.



APPROACH
We will build a modern, open infrastructure for the development of general force fields (FFs) that model organic
small molecules, biomolecules, and chemical adducts self-consistently, recasting FF parameterization as a pri-
marily automated machine learning problem that fully exploits known physics. By “modern” and “open”, we mean
modular, extensible, open source, and using and documenting open standards and best practices, as detailed in
the Data Sharing Plan. This infrastructure is needed for transferable, general force fields that easily model new
molecular systems.
Aim 1: Produce a transferable FF infrastructure to model virtually all NIH-relevant bioorganic
chemistry.
With new approaches to chemical perception and transferability, our dramatically increased domain of applicability
will mean users can assign high-quality parameters to essentially all NIH-relevant bioorganic chemistry. This
includes parameterizing, self-consistently, all bioorganic molecules, including nucleic acids, sugars, lipids, organic
polymers, and their derivatives, in addition to the drug-like small molecules and proteins currently supported. This
will make simulations of systems including covalent dyes, glycosylations, lipid-encapsulated polymer nanoparticles
drugs simple, rather than major research projects.
Subaim 1.1: Improving force field scope and transferability using direct chemical perception approaches
to better describe chemical environments
We plan to provide accurate force fields describing all chemical space relevant to human health. Currently, our
force fields cover small/drug-like molecules and, in our forthcoming Rosemary (OpenFF 3.0) force field release,
they are being extended to proteins (see Progress Report). However, further work is needed to ensure we can
accurately and self-consistently handle nucleic acids, post-translational modifications, non-natural amino acids,
lipids, carbohydrates, cofactors, and common organic biological ions, as well as coordinated metals and ions.
Our force fields already handle most of these in the sense of providing parameters, but prior work indicates
that additional data and testing is required for specific application domains (e.g., lipid force fields68–72 and nucleic
acids73–77) to ensure particularly common molecules and building blocks are treated with sufficiently high accuracy,
so we will generate this data in collaboration with the relevant communities (see Subaim 4.2).
Using this data, we will build self-consistent accurate parameters for these key molecules and building blocks. Thus,
we are not tuning parameters separately for each class of bioorganic molecules, but rather adding more specific
chemical perception (and associated data) to ensure that these critical building blocks are treated accurately and
consistently across molecular types. Our basic approach thus involves extending our small molecule infrastructure
to handle biopolymers composed of organic building blocks. First, we will engineer routes to preserve chemical
information on import, extract it from databases, or infer it; this is crucial because common formats (e.g., PDB,
PDBx/mmCIF) files often do not include a full description of chemical information, missing crucial information such
as formal charge or bond order. Second, we will generalize our prototype graph neural net changing architecture,
EspalomaCharge,14 into a fast and accurate method for assigning charges to polymers of arbitrary size.
Another critical aspect of this work is to identify additional parameter types required beyond those provided by the
small molecule force field. We will refine SMIRNOFF types as appropriate for nucleic acids and lipids drawing from
extensive pioneering prior findings.69;70;76;78–81 In other areas (e.g., sugars82–84) typing decisions are less certain,
and we will utilize our besmarts (binary encoded SMARTS) framework to automatically determine when/where
additional types are needed.24

Subaim 1.2: Improving transferability across chemical environments using graph convolutional neural
networks
We and others have recently proposed a new approach to parameter assignment that uses a continuous latent
embedding of atomic chemical environments12;85 instead of traditional atom typing or the direct chemical percep-
tion28 approach used in current OpenFF FFs. Using graph convolutional networks (GCNNs) that respect chemical
equivalences (Figure 5), each atom can be assigned a continuous vector representation that is then combined in
a symmetry-preserving fashion, enabling parameters to be generated directly by a neural network module.12

This approach provides several key advantages, the most significant of which is transforming a previously difficult
mixed discrete-continuous optimization of discrete chemical environments and continuous parameters into a
problem that can be solved by continuous optimization strategies, enabling both types and parameters to be
fit simultaneously. In this way, new atom or parameter types can be learned simply by including representative
molecules in the fitting process (Figure 2). New modules for different interaction types (e.g., point polarizability,
alternative van der Waals representations, class II valence terms62;63) can easily be added and the force field



re-fit without the need to craft new discrete type classes, and the resulting parameters are smoothly interpolated
based on changes in the automatically perceived chemical environment.
Preliminary work. We have shown that GCNNs can produce continuous descriptors of atom environments while
preserving chemical equivalences and are expressive enough to learn existing human-assigned typing schemes.12

These models are able to learn MM valence terms directly from quantum chemical potential energies.12

As with SMIRNOFF, this architecture is modular, enabling new parameter types (e.g., point polarizabilities) to be
readily integrated. However, it offers the advantage of not having to craft parameter types, as the parameters can
be learned from data as continuous functions of the atomic environments.12 We have deployed a version of this for
replacing AM1-BCC charges self-consistently to small molecules and biopolymers14 and have used the approach
to build a prototype self-consistent force field for proteins and small molecules that delivers significantly increased
accuracy in a protein:ligand free energy benchmark.12

We will integrate this GCNN approach into the Open Force Field infrastructure and assess ways to improve the
robustness, data efficiency, and ability to tailor these models to learn new chemical environments. This will include
enabling our existing infrastructure for condensed-phase property calculations and quantum chemical targets to
be used, bringing the GCNN approach on par with our existing SMIRNOFF-based infrastructure. We will then use
this infrastructure to refit entire force fields using the same QC and experimental physical property data as our
existing and new force field generations.
While our current prototypes already generalize well to new chemistries (Figure 2), further improvements in gener-
alizability and data efficiency may be possible by replacing simple one-hot encoding of elements with continuous
descriptors that capture the periodic table more completely.86–88 We will also investigate semi-supervised training
approaches, where unlabeled molecules are used to better learn chemical relationships.89 Because complex,
long-range conjugation can challenge GCNNs, we will also investigate alternative approaches to capturing most
of this information.90

Other chemistries: Important classes of chemistries that don’t fit as clearly into “organic” materials are water, main
group ions, and metal ions. These will be addressed for both Subaim 1.1 and Subaim 1.2.
Currently, OpenFF force fields use the TIP3P water model91 due to its historical success with AMBER-family
force fields. OpenFF nonbonded refits to date have used aqueous mixture properties, fixing the choice of water
model.3 However, all current widely-used water models have been parameterized almost exclusively to replicate
the properties of pure water. We will co-optimize water along with all other molecular parameters, capturing not
only pure water properties but also interactions with cosolvents, solutes, and ions to better describe complex
mixture thermodynamics. The data and infrastructure to perform this optimization already exists,3 and there
is good evidence92 that there is enough parameter freedom in even rigid water models to still get pure water
properties essentially correct while improving properties involving solutes.
We will incorporate new sources of condensed phase data into our fitting to better handle main group ions, group
I and II metal cations, and halides, as described in Subaim 2.2. More challenging are coordinating transition
metal ions, which are essential for modeling biomolecules.93;94 At the present time, we will adopt a simple but
widely-supported virtual site charge approach that provides a robust approach to model coordination geometry
(the “cationic dummy model”95) and explore the possible use of well-supported LJ modifications for increased
accuracy (e.g., LJ 12-6-4 potentials96;97). We will benchmark against stability and properties for relevant molecular
systems in order to define the domain of applicability, as this approach may not extend to certain metal complexes
(e.g., hydroxamic acid/Zn interactions98) without more advanced functional forms.
Assessment : Both Subaims 1.1 and 1.2 rely on strategies for assessing how well models effectively learn from
limited data (data efficiency) and generalize to new chemistries. We will assemble assessment datasets (both
quantum chemical and experimental) for relevant chemistry domains, and assess both accuracy and data efficiency
on domain-specific benchmarks. When accuracy gaps are identified, we follow the same approach used in
preparing our Rosemary release, which self-consistently handles proteins: identifying molecular sets where new
quantum chemical calculations or experimental datasets need to become part of our training data and incorporating
these into type inference and parameter fitting.
For protein FF assessment, we will curate published protein NMR data, including NOEs, through-bond 3J cou-
plings, Lipari-Szabo S2 order parameters and residual dipolar couplings (RDCs) from the Biological Magnetic
Resonance Data Bank (BMRB),99 expanding on earlier work.100 We will collaborate with existing force field ef-
forts to incorporate extensive protein, nucleic acid, and lipid NMR datasets they have found useful in force field
assessment (see Letters),61;101;102 and implement best-practices for computing NMR observables. We will also



assess our protein FFs via simulations of selected room-temperature protein crystals.34

Aim 2: Enable and execute new force field science, systematically addressing alternate functional
forms and the utility of experimental reference data.
To date, our force fields have used a well-accepted functional form with atom-centered, fixed partial charges
to represent electrostatic interactions and the Lennard-Jones potential for van der Waals interactions—a form
essentially unchanged for over four decades.73;103;104 This widely-supported functional form, whose early selection
was driven in part by limitations of 1980s-era computer architectures, neglects important physics, and may yield
insufficient accuracy in some systems even when carefully parameterized against well-chosen data. Pioneering
force field projects have explored more detailed physical interaction models, but it remains uncertain which models
are most accurate for any given domain, and the trade-off between cost in computational speed and benefit in
accuracy should be evaluated before committing to a proposed change. Little comparison data guides either
users, in selecting optimal functional forms, or developers, in implementing new functional forms. This problem
stems in part from the use of different training/testing datasets and methods by different researchers, and to the
lack of robust statistical assessment frameworks. We argue that rigorous assessment of functional forms requires

comprehensive and consistent contruction and benchmarking of models using the same domain-relevant training

and test data. We will enable these rigorous comparisons by further expanding our efficient, automated, open-
source infrastructure, comprising both software and data, to fit and assess force fields on consistent datasets and
robustly evaluate alternate functional forms (Subaim 2.1).
We will also expand the dataset of experimental physical properties used to train FFs in order to improve FF
accuracy and transferability. This work leverages modern computer architectures, automation, and the growing
availability of large machine-readable collections of chemical property data. To take advantage of these opportuni-
ties, we will outfit OpenFF Evaluator with the ability to compute additional properties and make these advances
available to the research community (Subaim 2.2). We will also use this data to explore the selection of optimal
reference datasets to efficiently drive force field accuracy (Subaim 2.2).
Subaim 2.1: Build a plugin infrastructure enabling systematic parameterization and testing of force fields
with varied functional forms, then use it to evaluate key functional forms

We have prototyped a plugin interface (smirnoff-plugins105) that allows OpenFF infrastructure (Figure 1) to
accept external plugins that allow novel functional forms to be used (Figure 6). This enables force field scientists to
parameterize complete force fields with different functional forms using the same dataset in just days to weeks.105

This prototype has been used by collaborators105;106 to explore the use of off-center partial charges19 (below). We
will extend this interface to handle functional forms supported by the widely used OpenMM simulation package,107

which is uniquely flexible in its ability to handle a wide range of force field terms. This will enable research groups
worldwide to rigorously study existing force field variants and explore new ones for proposed community adoption.
We will use this plugin infrastructure to test leading alternate functional forms, focusing on those which are of
particular interest to the field, add little computational cost, and are easily implemented in or available in typical
simulation codes (Figure 6). While these functional forms are not new, our focus is to determine how much impact
they have when fairly trained/tested on the same data in comparison with more traditional FFs. Such systematic
study will allow a next generation of more accurate and performant FFs. We plan to study variants such as the
following, each of which will be trained consistently and benchmarked against our standard functional forms:

• Off-atom (or virtual) interaction sites: Partial charges situated not at the centers of atoms but at nearby
sites defined in a local molecular frame of reference108 may, for example, improve the treatment of lone pair
electrons on carbonyl groups and the geometric preferences of hydrogen bonds. We will establish a compact
set of candidate virtual sites motivated chiefly by lone-pair geometries and � holes and assign partial charges
analogously to the AM1-BCC method32 in which a new set of bond-charge corrections (BCCs) are optimized

Figure 6. A prototype plugin interface allows us to rapidly explore alternate functional forms. Our smirnoff-plugins105 interface
allows alternate functional forms to be slotted into our toolkit and then trained using the same infrastructure and data as standard releases.
This approach was used to assess the double exponential (DEXP) potential that avoids overly stiff repulsion and singularities as a
replacement for Lennard-Jones; the resulting FF agrees better with QM and yields better transfer free energies than obtained with the
baseline LJ model. 105



to yield both atom and virtual site partial charges optimized to replicate QM electrostatic potentials (ESPs).
We will then reoptimize all valence and LJ parameters against reference QM and experimental data, as
in Sage,3 and benchmark against baseline FFs trained against the same data using only atom-centered
charges.

• Alternative van der Waals models: The conventional LJ potential yields an unrealistically steep representa-
tion of steric repulsion,109 contains singularities, and may also provide an overly long-ranged representation
of the dispersion interaction.110 We will evaluate the benefits of moving to more realistic functional forms,
such as the Buckingham exp-6111 and double exponential (DEXP)105 potentials. As softcore modifications
of the LJ potential are normally required to eliminate singularities when running alchemical free energy
calculations,112 adopting a singularity-free van der Waals potential like DEXP could greatly simplify such
calculations.

• Angle/bond couplings: Changes in bond angles affect the energetics of the associated bond stretches.113

We will model this with the Urey-Bradley term,113;114 typed according to our existing angle types.
If we find multiple variants yield clear improvements in accuracy, we will train and test FFs that combine them,
assessing accuracy/performance tradeoffs. The same framework will also facilitate other explorations such as the
use of conformation-dependent charges,115–119 explicit treatments of electronic polarizability,55;120–124 additional
class II (i.e. angle-torsion coupling) force field valence terms,62;63 use of neural net potentials,125–127 etc. We
anticipate that some of these will be studied by other research groups using our infrastructure and support.
Subaim 2.2: Build infrastructure to train and test force fields using untapped physical property data
Force field parameters are typically tuned against experimental reference data along with QC data. Using a
large set of diverse data is expected to maximize accuracy and transferability. The experimental properties most
commonly typically used to train FFs—densities, and heats of vaporization of pure organic liquids–do not report on
the interactions of different compounds with each other, on interactions in aqueous solution, or on the properties
of ionic species. We recently showed that enthalpies of mixing and densities of organic liquid mixtures provide
considerable value for force field fitting.10;26 Here, we propose to expand our OpenFF Evaluator6 module to new
properties so that additional, more diverse, data can be used for FF training and testing.
We will draw on diverse solution data from NIST’s ThermoML Archive,128 including osmotic coefficients (⇠6000
measurements over ⇠300 data sets) and activity coefficients (⇠60K measurements over 10K data sets). Osmotic
coefficients measure the change in free energy of a solvent in response to the presence of a solute, while
activity coefficients measure solute-solute interactions that lead to nonideal solution behavior. Prior FF work
based on Kirkwood-Buff solution theory has proven the power of solution data in FF development.129 Data on
the thermodynamic interactions of small, biologically relevant, molecules such as urea and glycols, with amino
acids130;131 and nucleic acid components132 may also be of value. Such data can report on the interactions of
ionized compounds, such as carboxylates and amines, in aqueous solution. We will also explore other hitherto
untapped properties that offer a good balance of availability, relevance, and facile computability. These include
octanol-water partition coefficients, which are available for many drug-like compounds,133;134 and the speed of
sound in liquid mixtures, which is closely related to compressibility and for which tens of thousands of data points
are available. These can all be computed relatively quickly and are available for a wide range of compounds.
Once a force field has been created, it must be carefully assessed against domain-relevant data outside the
training set. Unlike training-set properties, which are iteratively computed within an optimization loop, test-set
properties need to be computed only once for a force field, so they can include important properties that are more
complex and time-consuming to compute. We have already integrated the ability to compute aqueous host-guest
binding free energies into Evaluator and used this computationally expensive but particularly relevant property,
which is available for well over 100 systems in the literature135 and databases like SupraBank and BindingDB,136

for FF evaluation.137 We will extend Evaluator to calculate NMR chemical shifts and scalar couplings, which report
on conformational preferences, for small peptides in aqueous solution;34 and to protein-small molecule binding
free energies (of particular interest to drug discovery) computed on Folding@home.17;138–141 We will also outfit
Evaluator to carry out the small molecule crystal structure assessments described in the Progress Report.
We will also build out infrastructure for benchmarking on miniprotein thermostability. Collaborator Gabriel Rocklin
(see Letters) has conducted high-throughput stability studies of thousands of designed mini-proteins,142 so we will
use this dataset for protein force field assessment. We will also include melting curves for several small proteins
and peptides, such as the villin headpiece, the helical (AAQAA)3 peptide, Trp-cage, and the CLN025 hairpin, which
have been experimentally obtained using standard techniques .143–145

The choice of training dataset composition dramatically impacts FF quality, but this area of science is mostly



unexplored. We will assess how dataset composition impacts FF accuracy while seeking ideal minimally expensive
collections of experimental data to train FFs, exploring diverse data types and their impact on predictive power.
Aim 3: Create next-generation tools for novel approaches to fitting force fields.
Subaim 3.1 Build a modern software infrastructure to improve FF training, assessment, and tailoring
OpenFF has now built multiple generations of production FFs from curated quantum chemical and experimental
datasets using ForceBalance,146;147 a Python FF fitting tool. However, a revolution in advanced Python infrastruc-
ture for ML—supported by massive investments in commercial software development—presents a new opportu-
nity to rearchitect our fitting infrastructure to take advantage of investments in scalability, accelerated hardware,
modularity, automatic differentiation, and just-in-time compilation, simplifying our tooling and greatly expanding ca-
pabilities. In addition, ML frameworks enable integration of accurate new ML-based potentials for describing local
valence interactions, such as SchNet,127 ANI,148;149 and NequIP,150 which can be fast enough for biomolecular
simulations.
Preliminary data: We have developed prototype force field fitting infrastructures12 (Figure 2) in both PyTorch
(espaloma151) and JAX (espalomax152). PyTorch is a popular, well-supported Python ML framework (developed by
Meta) with extensive community support, while JAX (developed by Google) leverages similarities with the popular
numpy ecosystem. Both frameworks offer parallelization, hardware acceleration, and automatic differentiation. The
last enables computed fitting targets to be differentiated with respect to either parameters, configurations, or both,
which has the potential to drastically simplify the code and accelerate the implementation of new features and
fitting targets.
We will migrate our fitting infrastructure to one of these ML frameworks, drastically simplifying the code in the
process, as (1) numerous features we have been maintaining are built-in features of these frameworks, and
(2) parameter and position gradients need not be implemented because they are automatically generated by
automatic differentiation. We will focus on modularity to enable new fitting targets and functional forms to be
rapidly prototyped, evaluated, and used. We will support both SMIRNOFF (Subaim 1.1) and GCNN (Subaim 1.2)
type perception and parameter assignment modalities. With ready access to both built-in and community packages
of optimizers, we will compare the performance and suitability of our current parameter optimization strategies with
those popular in ML (such as Adam, stochastic gradient descent, and others153) and new optimizers based on
Langevin dynamics.154 To enable users to rapidly tailor our force fields with additional quantum chemical data for
their chemistries of interest, we will assess various strategies for tailoring our released force fields using extensive
parallelization and accelerator hardware. Our current workflow for condensed phase simulations uses OpenMM—
which cannot take full advantage of modern GPUs for small condensed-phase systems and does not support
analytical gradient computation in all parameters. We will therefore explore the potential to significantly enhance
throughput by using the ML framework to pack many simulations onto each GPU and analytically compute any
desired parameter gradients during optimization. Finally, we will ensure our tools are rapidly installable (via conda-
forge), deployable, scalable, and well-documented with tutorials, so the community can rapidly experiment with
force field parameterization and assessment.
Subaim 3.2: Investigate the use of surrogate models to reduce the number of molecular simulations
required for force field parameterization and to enable Bayesian inference.
To fit FF parameters against ensemble-averaged equilibrium properties, such as densities of organic liquids, we
need to run hundreds to thousands of molecular simulations. Some properties, such as density or speed of sound,
require only a single simulation while others, such as transfer free energies or activity coefficients, require multiple
simulations. However, performing Bayesian analysis requires stochastic sampling over FF parameters, repeating
this process thousands of times. A standard machine learning approach to overcome this problem is to develop a
surrogate model which approximates the simulation results at far lower computational cost, and to integrate this
model with full simulations to create a rigorous, efficient, multifidelity approach to parameter optimization.
As described in the Progress Report, we have shown that, by using adaptively-expanded Gaussian process
surrogates, we can perform much more complex and thorough optimizations, finding parameter combinations that
give as good or better results than those afforded by the local gradient descent with simulations alone,26 with
similar computational cost. We will integrate surrogate models into the ML framework, so that we can perform
both optimization and Bayesian sampling with such a multifidelity approach.
Traditional FF parameterization seeks a single model that best fits the training data. However, a given training set
may not tightly constrain all parameters, particularly when parameters co-vary. For example, different combinations
of ✏ and � LJ parameters can yield equally accurate hydration free energies.155;156 Importantly, even if two models



are equally consistent with training data, they may lead to very different predictions of observables not well-
represented during training. Thus, Bayesian approaches will allow us to understand how uncertainties in the
parameters can propagate to uncertainties in predictions.
Bayesian inference also allows comparison of statistical evidence for different families of force field models via
Bayes factors,157 with data-driven decisions for each modeling choice, even if model families possess different
numbers of parameters. We have demonstrated this approach with model systems,27 and will use this strategy to
investigate the statistical support for alternative van der Waals functional forms, partial charge models, selective
multipoles, selective off-center charges, site polarizability models, and deep learning models for valence terms.
Subaim 3.3: Incorporate machine-learned potentials fast enough for large-scale biomolecular simulation
While molecular mechanics force fields have traditionally used low-order Taylor and Fourier expansions to model
valence interactions,62;63 the significant limitations imposed by these approximations have inspired the community
to look toward more flexible approximations to these important quantum chemical contributions to molecular poten-
tial energies. Recently, there has been much excitement around the rapid progress in using machine learning (ML)
potentials that combine featurization of local atomic environments with flexible neural networks to model valence
energies.127;148–150;158;159 Inspired by pioneering work on hybrid physics/ML potentials,159–162 we will explore the
use of short-range ML potentials to model valence interactions, replacing Taylor and Fourier expansion terms, in
combination with standard physical models of nonbonded (e.g., van der Waals and electrostatic) interactions.
Preliminary data: We have extensively experimented with the ANI2x149 ML potential, illustrating how replacing
standard ligand MM valence terms with ML valence terms can significantly improve accuracy in benchmark pro-
tein:ligand alchemical free energy calculations.163 In addition, we have shown how condensed-phase properties
can be used together with quantum chemical data to optimize ML potentials.164;165 In collaboration with OpenMM,
we have demonstrated how force evaluations for ML potentials as SchNet127 and ANI148;149 can be accelerated to
within ⇠2.5 the speed of GPU-accelerated MM for modeling small molecules in solvated protein:ligand systems.166

Using our ML fitting framework (Subaim 3.1), we will explore strategies that replace the valence terms based
on Taylor (harmonic bonds, angles) and Fourier expansions (periodic torsions) with ML potentials, with a focus
on fast ML potentials that offer competitive performance with MM,166 such as SchNet127 and ANI148;149 and
others that offer good compromises of simplicity, speed, and accuracy. We will build on our preliminary work which
simultaneously fit to quantum chemical and ML valence with physical Lennard-Jones and electrostatics models.163

Aim 4: Build force field communities to maximize impact in biophysics and drug discovery
Community infrastructure accelerates force field science
Our high quality, well-documented tools accelerate community force field science. For example, Danny Cole’s
group built an entire self-consistent force field that replaced the LJ 12-6 functional form with a double exponential
(DEXP) functional form105 in a matter of weeks using our infrastructure, then proceeded to test it on hydration
free energies, an effort which would have taken years of human time before OpenFF. Similarly, Brian Space’s
group uses OpenFF infrastructure for novel force fields for metal organic frameworks (see Letters)106 Thus, our
infrastructure already enables exploration and innovation far beyond what we can achieve ourselves.
Our infrastructure drives community innovation, which folds back into setting our future directions; for example, if
the proof-of-concept work on DEXP force fields (Figure 6) continues to show value, this may drive mainline force
fields to move in this direction because of benefits for free energy calculations. Similarly, our proof-of-concept work
using off-site charges19 is slated for inclusion into a future force field release after 3.0.
Overall, this approach allows the community to rapidly prototype, implement, and de-risk ideas before they are
brought into full production. These early successes already demonstrate the value of nucleating community, and
our community-building efforts will thus focus in three main areas detailed below.
Subaim 4.1: Build communities of software infrastructure
To continue leveraging quality, fully open-source, software infrastructure, we will build communities around this
infrastructure. To some extent, this is already well underway given the successes described above. To further
extend our software community, we will build a regular community-facing seminar where we invite people using our
tools and infrastructure to talk about their successes, failures, results, and future directions, facilitating exchange of
ideas and further collaboration around our infrastructure, while helping build community and accelerating progress.
We will also help the community use the OpenFF network to grow and expand their projects and build partnerships.
Many innovators don’t have access to a broad range of potentially interested parties and collaborators who want
to put their innovations to use. OpenFF has a network of pharmaceutical industry users/collaborators who are



keen to take advantage of new innovations and we will use this to grow and expand the community around our
projects and infrastructure. As a concrete example, Micaela Matta (King’s College London, see Letters) was
applying for funding for a Ph.D. student to use OpenFF infrastructure to do innovative new work on biomaterials,
but needed an industry partner for the work; we used our network to circulate a white paper and connect her with
collaborators at Janssen Pharmaceuticals so her project could be funded and move forward, further expanding our
software/science community. We plan to formalize a process for circulating collaboration proposals to our network.
OpenFF also maintains a strong connection with the Open Molecular Software Foundation (OMSF), a 501(c)(3)
nonprofit focusing on building high quality, open source software and sustainable communities for research soft-
ware development. OMSF will further help build our community; for example, it also houses the Open Free Energy
project (OpenFE) which takes advantage of our tools and infrastructure to deploy scalable binding free energy
calculations. We plan to continue to partner with OMSF to help grow the relevant community.
An important way to grow our community is better interoperation with diverse, widely used, molecular simulation
engines, such as OpenMM, AMBER, GROMACS, CHARMM, NAMD, and LAMMPS. Thus, we will enable export
from OpenFF tools to a wider range of simulation engines and create tools to interoperate with automated
workflows; our Interchange framework already is helping in this regard and we plan to continue its development.
We will also develop tools to put other force fields into the OpenFF workflow.
Subaim 4.2: Build communities of data
We will continue to assemble larger and more diverse data sets, including quantum mechanical, physical property,
and organic crystal data sets, as well as the tools for accessing them.
We will continue to construct an open, comprehensive QC database of high-accuracy, ab initio datasets for
parameterizing small molecules and biomolecules. Force fields generally rely on QC calculations for determining
torsional potentials, valence terms, and partial charges. Typically, these datasets have been produced at great cost,
used once, and then discarded—despite their considerable value to the community for force field improvements,
new force field efforts, and machine learning research.148;167–169 However, in OpenFF we now store all such data
and make it easily reusable via QCArchive so it is available for diverse applications, not just our own. Already, we
have made a large number of QC geometries and energies and torsional potential energy scans available for a
wide variety of pharmaceutically relevant small molecules and biomolecules.
In particular, drawing on community expertise, we will curate and extend our QC datasets to provide enhanced
coverage of nucleic acid and lipid building blocks and structures, much as we’ve done for protein building blocks.35

This will allow us to build, for example, high quality lipid and nucleic acid force fields, when used in combination
with experimental data. Additionally, as we introduce and improve small molecule parameters, we will continue our
current approach3 of systematically extending our small molecule training data to ensure each individual parameter
is trained across a broad range of chemical contexts that exercise that parameter. These data will be available to
the molecular modeling community, and take advantage of input from that community. We will also curate extensive
experimental datasets, including novel data types as discussed in Aim 2, including those which are too expensive
to use in parameterization, and provide tools for assessing biomolecular force fields. As described in Subaim 2.1,
we will integrate new property computation plug-ins into our physical property computation pipeline for each new
property class, documenting best practices.
Subaim 4.3: Create communities of validation

We will build on our success in developing community best practices for protein force field validation34 to establish
best practices in validation for nucleic acids, lipids, sugars, and other biologically important molecules. We will
convene experts from our scientific advisory board, and in the US and abroad to collate and annotate systems
most useful for validation.
OpenFF already benefits from extensive communities of validation, especially from the pharmaceutical industry.
Our partnership with the (separately funded) OpenFF Consortium means that new innovations which may impact
near-term work in the drug discovery area are presented to the Consortium’s advisory board for discussion and
input, and those innovations which are the most promising are potentially rolled into our mainline force fields and
then see real-world validation and use.15 This work is so important to industry that industry collaborators often
test tools and infrastructure during alpha and beta testing stages; for example, Cresset was a key early tester of
our BespokeFit technology.36
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