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Abstract Molecular mechanics force fields have diverse applications in pharmaceutical design and discovery. A

key factor in determining their utility is the accuracy with which they model molecular interactions and the difficulty in

predicting how reliably they can predict observables of interest, such as binding affinities. While a number of biomolecular

force fields are currently in widespread use, their accuracies are still unsatisfactory in many cases. The pace of their

development has been hindered by legacy constraints or proprietary restrictions, and they currently lack the ability to

prospectively assess confidence in their predictions. The Open Force Field Consortium aims to solve these and other

significant problems by developing a new generation of open force fields, along with the open software infrastructure and

open datasets to advance the field and accelerate progress.

Specifically, the Consortium aims to (1) engineer a modern, open, sustainable, extensible, and well-supported framework

for automated force field improvement and application; (2) use this to release rapid iteratively improved versions of

an AMBER-compatible small molecule force field we have developed to take advantage of modern cheminformatics;

(3) produce entirely new comprehensive force fields that break free of legacy accuracy limitations while maintaining

compatibility with existing simulation software, providing dramatically improved accuracy for modeling predictions in

diverse applications ranging from predictions of binding affinity, selectivity, and drug resistance, to partitioning, solubility,

kinetics, and other properties; and (4) work closely with industry partners to ensure the development path follows that

most relevant to R&D needs.

Here we present a project overview, covering key aspects of planned development efforts.

1 Introduction
Molecular simulations andmodeling based on all-atommolecularmechanics force fields are a key component

of modern pharmaceutical drug discovery workflows. Their use has grown considerably given the widespread

success of free energy methods in predictive design settings in recent years [1, 6, 6–9, 27, 38]. These force

fields, which describe the energy of a system as a function of the positions, provide simple approximations

to the underlying physics in a way which can provide a reasonable balance of speed versus accuracy and

achieve considerable predictive power that has been difficult for simpler models to achieve.

Current force fields are both wildly successful and very limited [27]—they have ushered in a new era where

we attempt quantitative biomolecular design, using simulations and modeling to guide lead optimization [1,

8, 27] and predictions of other properties such as solvation [13, 23], partition and distribution coefficients [3],

solubility [11, 24, 26], selectivity [2] and drug resistance. Failure cases are well known however and accuracy
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Figure 1. Using the SMIRKS chemical query language for direct chemical perception. SMIRKS allows for direct chem-
ical perception via chemical substructure searches; here, a single SMIRKS pattern recognizes three different substructures

in two different molecules (Match 1, 2, and 3), with matches shown by color coding of the atoms/SMIRKS patterns involved.

Here, the relevant pattern is a carbon with four connections ([#6X4:1] (yellow) single bonded (-) to a trivalent nitrogen
([#7X3:2], blue) which is single-bonded to a trivalent carbon ([#6X3], gray) which itself is double bonded (=) to a neutral
oxygen with a single connected atom (#8X1+0], red). The first carbon and nitrogen are singled out for special treatment
by having numerical atom labels (:1 and :2) assigned to them, in this case because the SMIRKS pattern would be used
to assign a bond parameter to the bond connecting the two labeled atoms. The bond connecting these labeled atoms

(green) is singled out for special treatment because it connects two labeled atoms. Specifically, the force field format we

introduce here allows us to use this SMIRKS pattern to refer specifically to parameters for the bond connecting these two

labeled atoms.

is not yet what is needed [27], in part because the core of present day force fields (the nonbonded terms) still

primarily dates from work done in the 1980s [17] and 1990s [16]. Human expertise, worked out over years

and decades, has played a key role in developing present-day force fields and it is difficult to impossible for

academics to obtain traditional grant funding to improve force fields; improvements are typically limited

adjustments rather than entirely improved force fields [14, 15, 20, 25, 30]. Thus there are relatively few new

force field efforts, and even those typically take a different approach (such as a different functional form, like

AMOEBA or the Drude efforts) because of the difficulty of obtaining funding to improve existing force fields –

which do still have clear room for improvement [12, 22]. Even COMPASS II and OPLS3 – which both involved

significant commercial development efforts – both are an extension of earlier work rather than an overall

refitting [14, 29].

Our vision is to remove much of the human effort and expertise involved in force field development,

allowing automated development of new, improved force fields from the ground up so we can take advantage
of the wealth of new data and computer power we now have rather than being limited by a foundation built

30 years ago.

2 Objectives
2.1 Overall goals
The Open Force Field Consortium aims to:

1. Develop an open, scalable, extensible toolkit for automatically parameterizing and using force
fields. We aim to build a modern toolkit for improving parameters based on QM and physical property
data (including refinement based on in-house datasets), applying parameters to biomolecular systems,

and converting these for use in popular simulation packages.

2. Generate/curate open datasets necessary for producing high-accuracy biomolecular forcefields.
We aim to build an open quantum chemical fragment dataset for large regions of drug like chemical

space, compile high-quality physical property datasets necessary for moving past current accuracy limi-

tations (working with pharma partners to collect and compile such data as needed) and, as necessary,

conduct novel targeted experimental measurements to provide missing information such as binding

thermodynamics, liquid mixture densities/enthalpies of mixing, and logD/logP measurements.
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3. Release systematically-improved force fields on a rapid timecycle. We aim to parameterize and
release new force fields on a regular basis along with software/datasets used to build them; incorporate

industry feedback each cycle including feedback on targeted chemistries, critical failures, and industry

benchmarks; and prioritize easy accuracy improvements that maintain AMBER compatibility ahead of

harder ones.

Modernizing the parameter application toolchain

We seek to simplify and modernize the toolchain used to parameterize biomolecular systems; a flexible,

open tool should be able to parameterize systems for use with many biomolecular simulation codes (such

as Amber, CHARMM, OpenMM, gromacs, and NAMD), rather than the insular package-specific tools often

available for small molecule parameterization today.

Keeping force fields current

We seek to generate living, open, versioned force fields that consistently improve over rapid release cycles.

While we need more accurate and thus more useful force fields now we want them to improve and extend
over time as our physical property and quantum chemical datasets expand to encompass new chemistries

and measurements.

Making force fields extensible

While the OFFC aims to release consistently improved force fields, we want to democratize access to force

field parameterization and force field science through the release of open toolkits. Anyone should be able to

use these toolkits to improve force field accuracy by fitting to new physical property or quantum chemical

data, as well as experiment with new functional forms, or build a family of consistent force fields from the

same datasets with minimal effort. Ultimately, pharmaceutical companies or others should be able to build

force fields using internal proprietary data, if they so desire, or individual researchers should be able to

build force fields tailored to specific problems. We want to enable all of these goals. A key part of this is

data—good force fields require good data sets to build and test them—so we want to curate high-quality

data sets for force field parameterization and benchmarking.

Enabling design of biopolymers and biologics

We also want to ultimately allow consistent parameterization of small molecules and biopolymers, including

allowing graceful handling of covalent inhibitors, post-translational modifications, non-natural residues, and

other use cases not well treated by today’s force fields.

Making predictions with confidence

Another key goal of our Consortium is to provide an estimate of the confidence of predictions made by a

force field, beyond just the statistical error. These estimates should be built in to the force field, allowing

quantitative systematic error predictions for binding free energies and physical properties.

2.2 How is the effort open?
The effort is open in several critical aspects that are well-suited for an academia-industry partnership and are

non-traditional in the field. First, it is open source, with free access to the tools and force fields developed
provided to everyone under permissive licenses (MIT for software, CC-BY 4.0 for data and results). Second, it

utilizes open data, with collected and curated datasets made available to everyone. OpenFF tools may be
utilized by others to build force fields with proprietary data, but the Consortium itself focuses on truly open

software and force fields driven by data we make or others make publicly available. Finally, the Consortium

focuses on open science, with development done in the open, publicly, on GitHub, and all software and
force fields available and open, along with the methodology used to develop them along with all source data,

etc. The goal is to allow reproducible force field development. All code, data sets and force fields are made

available publicly on https://github.com/openforcefield.
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3 Breaking free of legacy constraints using direct chemical perception
One key aspect of our effort is to reduce the dependence of force field development on human experts,

and the human expertise required to build force fields. Typically, atom types are used to assign force field

parameters. One problem with this approach is that atom type definitions have, to date, been crafted based

on some combination of chemical intuition and analysis, without any rigorous basis for determining how

many atom types are necessary and sufficient. Thus, although substantial effort has gone into parameter

optimization, the science of atom typing is less developed, and does not offer confidence that current atom-

types are near optimal. The replacement of human-annotated featurizations with fully automated ones has

recently led to advances in both chemistry (e.g., DeepChem [39]) and image recognition (e.g., ImageNet [18]),

and we see great potential in the use of such methods for force field definition and development.

Another set of problems has to do with the way atom types are used to assign parameters to molecules.

In particular, most current approaches use a method we call indirect chemical perception to assign the
parameters to most or all of their energy terms. Indirect chemical perception involves the assignment of a

single identifier—an atom type—to each atom in a molecule, based on its local chemical environment, and

the use of these identifiers to look up most or all of the required force field parameters (e.g., Lennard-Jones,

bond-stretch, angle-bend, and torsions) in parameter tables. Thus, in indirect chemical perception, the set of

atom types contains all the information required to parameterize a system. This approach leads to a number

of difficulties.

First, the creation of a new atom type can lead to undesired proliferation of other force field terms. For

example, if new hydration free energy data leads one to add a new atom type to handle Lennard-Jones

interactions better, this addition immediately requires one to create and assign parameters to all the bond,

angle, and torsion types involving this new atom type. Often this leads to guessing or copying from existing

“parent” parameters, without any solid basis for these choices. Furthermore, this addition of possibly

needless parameters dramatically exacerbates the curse of dimensionality when one goes to optimize the

parameters. In principle, this problem might be addressed by constraining parent and child parameters to

be equal, but this is not standard practice, and, since the need for such constraints is not encoded in the

force field files, such linkages are easily lost over time, leading back to the curse of dimensionality.

Furthermore, when indirect chemical perception is used, the need to differentiate bond-stretch or bond-

torsion parameters can force the creation of new, otherwise needless, atom types, which must either be

assigned Lennard-Jones parameters based on parent atom types or left as free parameters to be optimized.

For example, in 3-methylenepenta-1,4-diene (Figure 2), the carbon atoms are all assigned the same Lennard-

Jones parameters in GAFF, consistent with the fact that they are in similar chemical environments, with

one double bond and two single bonds to another carbon or hydrogen atom. However, new atom types

(see figure) had to be introduced, merely to encode the fact that some bonds are single and others double,

since the bond-stretch parameters are inferred from the atom types. Figure 2b,c, and d [32, 33] shows

additional cases in which chemically similar atoms with identical Lennard-Jones parameters had to be

assigned different atom types to allow assignment of different bond-stretch parameters to single and double

bonds. Similarly, in biphenyls and related molecules, atom typing makes it difficult to recognize which bonds

should be rotatable without introducing new atom types. These additional atom types result, in turn, in

a further proliferation of additional bond, angle and torsion types. To apply automated parameterization

machinery when many similar parameters exist, such as the 16 sets of Lennard-Jones parameters for carbon

in GAFF/GAFF2 which only have three distinct values [31]), a human expert would have to designate which

parameters should be constrained to be identical versus which should be allowed to be distinct.

In addition to forcing the proliferation of parameters, indirect chemical perception can drive the occur-

rence of errors. For example, while the biphenyl cases just discussed have received careful attention to

avoid incorrectly treating the bond between bridgehead carbons, this approach required a human expert

to identify and solve problem cases and can fail for other systems which have not received such careful

attention. For example, a similar scenario occurs for bonds between the GAFF/GAFF2 types cc-cc, cc-cd,
and cd-cd, which have identical Lennard-Jones parameters and are used for carbons in non-pure aromatic
systems (Figure 2e). Here, GAFF/GAFF2 give the torsions involving these single bonds a barrier height of
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Figure 2. Even simple molecules can present challenging cases for indirect chemical perception via atom typing.
Atom typing these molecules in a way which can lead to proper assignment of parameters can be challenging because of

bonding patterns. Indicated atom types are GAFF/GAFF2 types. In (a), all carbons are sp2 yet are connected by alternating
single and double bonds, forcing introduction of the ce atom type for the inner sp2 carbons to allow single and double
carbon-carbon bonds to be distinguished. In (b), the bridgehead aromatic carbons in biphenyl must have a single bond
joining them, forcing introduction of the cp atom type which is identical to the normal aromatic carbon (ca) except that
cp-cp bonds are single and thus rotatable. Introduction of an additional phenyl ring, in 1,2-diphenylbenzene (c) further
complicates matters since, with only the ca and cp types there would be a cp-cp (single) bond within the lower aromatic
ring. GAFF/GAFF2 address this by introduction of a new type, cq, which is identical to cp and ca so that cp-cp bonds are
single, cq-cq bonds are single, but cq-cp bonds (and bonds involving ca of any sort) are aromatic. This scheme can in
principle handle even larger molecules like 1,2,3,4-tetraphenylbenzene (d) though, as discussed in the text, the massive
proliferation of torsional parameters resulting from the numerous atom types employed leads to considerable potential

for human error. However, this approach of introducing additional duplicate atom types requires a human expert to

notice when such types will be needed. (e) shows a case where bridgehead bonds between five membered rings are
typed as cd-cd or cc-cc, the same as bonds within aromatic rings. Thus, GAFF/GAFF2 make these bonds non-rotatable,
even though they are single bonds. This could presumably be fixed in the same manner as the issues of (b) and (c) via

introduction of additional atom types. However, some molecules, like (f), are impossible to atom type properly in this
framework [33]; incorrect atom types are shown in boldface and will lead to misassignment of parameters.

16.00 kcal/mol, which is identical to the aromatic bonds within the five membered rings and even higher

than the 14.5 kcal/mol barrier height used for aromatic bonds in biphenyl. Thus, unexpected bridgehead

atoms result in a rotatable single bond being treated as aromatic. Finally, for some molecules, it appears

that consistent typing is impossible to achieve with indirect chemical perception [33]; while introducing new

atom types (cp and cq) can resolve most problems in the biphenyl series of Figure 2b-d, with sufficiently
complex molecules, it becomes impossible to avoid assigning a single bond as aromatic (Figure 2f).

4 Preliminary progress toward next-generation force fields
4.1 SMIRNOFF: A new force field format using direct chemical perception
Recently, we introduced a new force field specification format called SMIRKS Native Open Force Field

(SMIRNOFF) which uses direct chemical perception, instead processing the molecular graph, with its varied

bond types, and uses this to independently assign Lennard-Jones, bond, angle, and torsion parameters based

on the local chemical environments of the respective atoms, bonds, angles, and torsions in the molecule. This

process works via substructure queries and easily accommodates the addition of a new atom with distinct

Lennard-Jones parameters without driving the creation of additional bonded types. The format is hierarchical
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and last-one wins, simplifying extensibility (Figure 3). This format led to development of a complete general

force field, called SMIRNOFF99Frosst, derived from AMBER parm99 and Merck’s parm@Frosst [4], without

any parameter refitting. We are able to show that SMIRNOFF99Frosst covers comparable chemical space to

GAFF/GAFF2, with similar accuracy [21], in initial tests, meaning that it provides an excellent starting point for

further optimization and parameter refitting as we discuss in our plans here.

pdfcrowd.comPRO version Are you a developer? Try out the HTML to PDF API

<?xml version="1.0"?>
<SMIRNOFF>

<HarmonicBondForce length_unit="angstroms" k_unit="kilocalories_per_mole/angstrom**2">
   <Bond smirks="[#6X4:1]-[#1:2]" length="1.090" k="680.0"/>
   <Bond smirks="[#6X4:1]-[#8&amp;X2&amp;H1:2]" length="1.410" k="640.0"/>
   <Bond smirks="[#8X2:1]-[#1:2]" length="0.960" k="1106.0"/>
</HarmonicBondForce>

<HarmonicAngleForce angle_unit="degrees" k_unit="kilocalories_per_mole/radian**2">
   <Angle smirks="[a,A:1]-[#6X4:2]-[a,A:3]" angle="109.50" k="100.0"/>
   <Angle smirks="[#1:1]-[#6X4:2]-[#1:3]" angle="109.50" k="70.0"/>
   <Angle smirks="[#6X4:1]-[#8X2:2]-[#1:3]" angle="108.50" k="110.0"/>
</HarmonicAngleForce>

<PeriodicTorsionForce phase_unit="degrees" k_unit="kilocalories_per_mole">
   <Proper smirks="[a,A:1]-[#6X4:2]-[#8X2:3]-[#1:4]" idivf1="3" periodicity1="3" phase1="0.0" k1="0.50"/>
</PeriodicTorsionForce>

<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5" sigma_unit="angstroms" epsilon_unit="kilocalories_per_mole">
   <Atom smirks="[#1:1]" rmin_half="1.4870" epsilon="0.0157"/>
   <Atom smirks="[$([#1]-[#6]-[#7,#8,#9,#16,#17,#35]):1]" rmin_half="1.3870" epsilon="0.0157"/>
   <Atom smirks="[#1$(*-[#8]):1]" rmin_half="0.0000" epsilon="0.0000"/>
   <Atom smirks="[#6:1]" rmin_half="1.9080" epsilon="0.1094"/>
   <Atom smirks="[#8:1]" rmin_half="1.6837" epsilon="0.1700"/>
   <Atom smirks="[#8X2+0$(*-[#1]):1]" rmin_half="1.7210" epsilon="0.2104"/>
</NonbondedForce>

</SMIRNOFF>

Figure 3. Application of a SMIRNOFF to methanol. Shown at left is an excerpt of the SMIRNOFF force field format XML
for a test force field for our AlkEthOH test set, and the representations of methanol at right illustrate how SMIRNOFF

provides the necessary force field parameters for methanol. For each force type or section in the XML (boldface), SMIRNOFF

loops over the needed force terms for themolecule, and finds the last (most specialized) SMIRKSmatch in the XML, applying

the parameters indicated there to the relevant force term. SMIRKS patterns are color coded, as are instances of the applied

parameters in methanol. Force types run in sections from top to bottom, and for each of the relevant blocks (bond, angle,

torsion, and nonbonded forces) here, a separate diagram is shown. For example, in the HarmonicBondForce section at
top, for the O-H bond in methanol, the SMIRKS pattern [#8X2:1-[#1:2] (pink) matches and thus is selected and applied
(pink highlighted bond, top right). Parameter assignments are color-coded by the element(s) involved – by the primary or

central atom in the case of NonbondedForce and HarmonicAngleForce parameters (except when there is redundancy, in

which case the second occurrence gets a color associated with non-central atoms), and by the central two atoms in the

case of HarmonicBondForce and PeriodicTorsionForce parameters. Gray is used for carbon, red for oxygen, light green for

oxygen-carbon, yellow for hydrogen, pink for hydrogen-oxygen, and light blue for hydrogen-carbon. Parameterization of

some symmetry-equivalent angles is omitted in this diagram for simplicity. The hierarchical nature of parameterization

is also shown here; for example, the NonbondedForce section contains a generic hydrogen SMIRKS pattern ([#1:1],
yellow) but this is overridden in the case of the hydroxyl hydrogen by a more specialized pattern (soft pink). Likewise,

the generic oxygen ([#8:1], red) is overridden by the more specialized neutral hydroxyl oxygen SMIRKS (magenta). Not
shown here are sections for bond charge corrections (BCCs) and constraints, though specifications for these are provided

at https://github.com/open-forcefield-group/openforcefield/blob/master/The-SMIRNOFF-force-field-format.md. It is also

worth noting that the XML format is unit-bearing, allowing handling of units utilized by various different force fields.

4.2 SMIRNOFF99Frosst: A new force field with high coverage of chemical space
We examined the accuracy of our prototype SMIRNOFF force field, and its coverage of chemical space, as

discussed in our preprint [21], and we find that it has better coverage of chemical space than other public

force fields and comparable accuracy to the widely-used GAFF force field – even without any refitting of

parameters (Figure 4 and 5). At the same time, it has far fewer parameters which would require fitting—only

335 parameter lines, where each line specifies a single force field term (e.g. one type of bond-stretch or

torsion); whereas the files specifying other open force fields we compared to have 3600-6800 lines. Thus,

this provides a much superior starting point for further optimization, a key part of our efforts. Additionally, it

fixes problems with these other force fields [21].
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Portability is a key consideration; any new force field needs to be easily accessible for a wide variety

of simulation packages and software. SMIRNOFF-based force fields already have portability; it is designed

to set up systems for simulation in the open-source OpenMM simulation package. However, via ParmEd

(http://parmed.github.io/ParmEd) and InterMol (http://intermol.readthedocs.io/en/latest/), prepared System
objects can easily be exported for use in essentially all common molecular simulation packages [28].
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Figure 4. Densities and dielectric constants for pure solvents from GAFF and SMIRNOFF99Frosst. Shown are
densities (top) and dielectric constants (bottom) for 45 compounds in 246 different conditions (near atmospheric pressure,

at different temperatures), calculated as described in Beauchamp et al. [5] (data ours). GAFF data is shown in the left

column ((a) and (c)) and SMIRNOFF99Frosst data is in the right column ((b) and (d)). In general accuracy is roughly

comparable overall between the two force fields, with SMIRNOFF99Frosst densities having a slight additional systematic

error relative to experiment but dielectric constants actually showing modestly improved errors (though slightly degraded

correlation). All panels show error bars, but in the density plots error bars are typically smaller than the size of the data

points. Statistics are shown in the inset on each panel, with brackets denoting 95% confidence intervals. In (a) and (b),

each compound is shown in a different color, with multiple conditions represented in the same color. Of particular note is

the density for flexible force field water, which is not typically used as a water model; in (b) this provides the most extreme

set of outliers in SMIRNOFF99Frosst, around a predicted density of 1.2 g/mL and an actual density of 1.0 g/ml. A full list of

compounds is available in the SI and at https://github.com/MobleyLab/SMIRNOFF_paper_code/blob/master/ThermoML_

benchmark/results_GAFF/tables/data_with_metadata.csv

4.3 SMIRKY: Automated machine learning for chemical perception trees
A longer-term goal of our effort is to remove the dependence on human chemical intuition that underlies

present-day force fields, improving automation. Currently, one place chemical intuition comes in is in the form

of atom typing, deciding which chemical environments deserve separate treatment. Our SMIRNOFF99Frosst

prototype force field uses chemical perception determined by a human expert, but we want to automate

sampling over chemical perception so it can be determined as part of the force field fitting process. To this

end, we recently developed SMARTY and SMIRKY, tools which can vary the chemical perception used in

parameter assignment, so that we will ultimately be able to use these as part of the fitting process.

5 Planned development prioritizes high utility, low difficulty tasks
The Open Force Field Consortium will use these starting points to accomplish our goals of building steadily

improved force fields while building infrastructure for to dramatically improve the accuracy of molecular

design. Thus progress will always focus on two aspects to facilitate iterative improvements: Improving force

fields, but also building infrastructure to make future cycles of improvement easier.

5.1 Refitting begins with incremental improvement of SMIRNOFF99Frosst
We already have an improved small molecule force field, SMIRNOFF99Frosst, which covers a vast chemical

space with fewer than 350 lines of parameters, as opposed to the thousands of lines needed by GAFF

and other modern force fields, providing an excellent starting point for further development, especially

in view of its relative simplicity and reasonable accuracy. The initial phase of our effort will begin with

re-parameterizing SMIRNOFF-family force fields from this starting point, beginning with the easiest tasks

which will also bring the greatest short-term benefits (Figure 6). Short-term tasks will result in clear benefits
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Figure 5. Hydration free energies for FreeSolv from GAFF and SMIRNOFF99Frosst. Shown are computed hydration
free energies on the FreeSolv set for SMIRNOFF99Frosst from this work and previous work [10] with GAFF. The left panel
shows SMIRNOFF99Frosst versus GAFF (left), themiddle panel shows SMIRNOFF99Frosst versus experiment, and theright panel shows GAFF versus experiment. Statistics, with bootstrapped uncertainties representing 95% confidence
intervals, are shown at the top of each panel. Here, the mean difference between SMIRNOFF99Frosst and GAFF is

statistically indistinguishable from zero (left panel) though there is a significant discrepancy based on the RMS difference.

However, compared to experimental values, the coefficient of determination R2, mean error, and RMS error for GAFF and

SMIRNOFF are within confidence intervals of one another (middle and right panels) indicating that the performance of

SMIRNOFF99Frosst is essentially comparable on this dataset.

for force field accuracy; our starting point already has accuracy comparable to leading existing open force

fields (e.g. GAFF and GAFF2) without any refitting, so this refitting should result in significant improvements

given the improved data and underlying infrastructure being used.

5.2 We plan two force field generations
Initial efforts (for Generation 1) will focus on refitting small molecule parameters while maintaining compat-

ibility with existing AMBER-family biopolymer force fields in order to deliver improved accuracy for small

molecule interactions as rapidly as possible. To proceed further will require a full fitting of all Lennard-Jones

parameters (start of Generation 2), which will necessarily break compatibility with the AMBER-family biopoly-

mer force fields. The consortium, under the guidance and direction of the advisory board, will work with the

established biopolymer force field groups, for example the group of Simmerling et al (FF14SB), to ensure

compatibility with these force fields and planned replacements.

6 The project roadmap involves several interlocking lines of development
Overall, our project roadmap involves multiple lines of development which are designed to provide regular

progress and iterative improvement, but also lay the groundwork for future innovations. Figure 8 shows

the tentative overall project plan, along with key actions involved in each stage. Stages are labeled for

reference later in Section 9. The are key opportunities for industry involvement and feedback at many points

throughout the process, most notably in assisting with benchmarking of force fields, in identifying and

prioritizing areas of chemistry for improvement, and even supplying molecules/chemistry (at least fragments)

for inclusion in our QM database.

We plan to develop improved versions of SMIRNOFF99Frosst using experimental data primarily to tune

nonbonded interactions, and quantum chemical data to tune bond-stretch, bond-angle, and torsional terms.

We envision two aspects of this process: The first is a straightforward adjustment of parameters associated

with the existing set of SMIRKS strings, with some human-curated changes to chemical perception and

number of parameters; this will form the primary basis for Generation 1 force fields. Note that, because

SMIRNOFF99Frosst has far fewer adjustable parameters than, e.g., GAFF and parm99@Frosst, it should

be more amenable to automated parameter fitting methods, such as ForceBalance [19, 34–37]. Lee-Ping
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Figure 6. The Consortium prioritizes straightforward, high-impact tasks. The initial phase of work (blue) will focus
on refitting small molecule force fields which maintain compatibility with AMBER-family protein force fields and focus on

small molecules, beginning with the most straightforward tasks that will result in the highest impact such as refitting of

bonded parameters to high-level quantum calculations. Limited Lennard-Jones refitting to condensed-phase properties

will be done in the middle of this phase. Each aspect of fitting will be automated as completed, allowing it to easily be

revisited when needed; some adjustments (such as the LJ type expansion) will require redoing earlier parts of the process

(such as torsion fitting) but this will become trivial via automation, given our database infrastructure. A second generation

of force fields (purple) will involve a complete refit of non-bonded parameters, breaking compatibility with AMBER-family
protein force fields and meaning that we will begin at that point to also provide biomolecular force fields. This refit will

leverage earlier advances in automation, allowing a corresponding refit of torsional and bonded parameters.

Figure 7. Two force field generations are planned. Initial work (blue) on Generation 1 small molecule force fields will
maintain compatibility with AMBER-family protein force fields, whereas Generation 2 (purple) force fields will involve a
full refit of non-bonded parameters, meaning that force fields will need to be used with a consistent set of biopolymer

parameters which will be developed in collaboration with existing biopolymer force field experts. Both generations of

force fields will maintain compatibility with typical molecular simulation packages.
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Figure 8. The Consortium aims to produce iteratively refined force fields on a rapid release cycle. Plans for
Generation 1 (blue) and Generation 2 (purple) force fields, accompanied by major steps taken, benchmarking, types of

data used, and major actions involved. Number/letter codes (top) mark major force field releases which will be rapid and

regular. The exact pace of releases depends on the scope of funding as further detailed below.

Wang, the create of ForceBalance, is one of the Consortium investigators on this proposal and is an expert at

automating this type of fitting.

The second aspect of our effort is to include automated optimization of the SMIRKS chemical perception

trees for assigning atom, bond, angle and torsional terms, based on the SMARTY/SMIRKY framework. Our

goal is to escape the traditional reliance on idiosyncratic chemical insight in assigning atom types. This

process, which has not hitherto been amenable to automation, will be facilitated by our parallel development

of the SMIRKY tool, which automatically carries out stochastic sampling and optimization over the SMIRKS

strings used in the SMIRNOFF format [? ]. Generation 2 force fields will draw heavily on this infrastructure.
7 Building open experimental and quantum chemical datasets
Force field development will draw extensively on both experimental and quantum chemical data (Figure 10).

Existing and newly generated data will be organized into high-quality curated, versioned, DOI-identifiable

datasets that will be released alongside the force field versions they were used to parameterize to guarantee

reproducibility and extensibility.

7.1 Experimental data
The https://trc.nist.gov/ThermoML.html [? ] provides a vast trove of machine-readable physical property
condensed phase data vital for fitting nonbonded parameters. The OFFC has already demonstrated the utility

of this data for automated benchmarking and validation of force fields [? ? ]. We will build infrastructure to
fit parameters using a wide range of physical properties stored in this database, including (but not limited to)
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Figure 9. Parallel development tracks hide latency in force field improvement. Our effort involves several parallel
development tracks to lay the groundwork for future efforts; for example, current work focuses on infrastructure for

automated fitting of bonded parameters to quantum mechanical data, which will be first incorporated after our release

1B which refits select Lennard-Jones parameters. Likewise, longer-term efforts on Bayesian parameter fitting will proceed

in parallel to the main track but only be incorporated for the 2A release, and similarly for several other parallel tracks.

temperature-dependent densities of pure and mixed solvents, enthalpies of mixing, transfer free energies,

and other properties. Binding thermodynamics data (such as host-guest binding thermodynamics from the

Gilson and Chodera laboratories, or stored in the http://bindingdb.org maintained by Gilson) will later be

included, as will speed of sound data, and potentially crystallographic information such as from the CCSD.

7.2 Quantum chemical data
Quantum chemical data will be particularly important in parameterizing valence terms (bonds, angles,

torsions) and developing improved partial charge models. Fundamentally, the effort will need to generate,

store, search, and retrieve large quantities of quantum chemical data on small molecule fragments in

multiple conformations.

We are partnering with the NSF-funded Molecular Sciences Software Sustainability Institute (MolSSI) to

build a large-scale quantum chemical database and workflow engine which will serve for our effort, but

which will also be useful to (and receive contributions from) the machine learning community. While a central

open quantum chemical database will be operated for the community by MolSSI/OFFC, the software stack

will be capable of being run internally by participants to generate and house quantum chemical data on

private molecules that cannot be disclosed publicly.

Initially, workflows will allow molecules to be provided for automated enumeration of protonation states,

tautomers, and stereocenters prior to fragmentation and capping. Capped fragments will be subjected to

advanced multidimensional torsion drives using generalizations of procedures used in the parameterization

of AMBER15FB [? ] to generate quantum chemical energy surfaces. Subsequent workflows will be developed
to generate perturbations to other valence coordinates, electrostatic potentials, and fragment-fragment

interaction energetics. Quantum chemical data will be stored in the MolSSI JSON QC schema standard.

8 More detailed development plans
As discussed in Section 6, we plan two generations of fore fields, with the first generation retaining compata-

bility with existing AMBER-family biopolymer force fields, whereas generation 2 will mark a more substantial

refit.
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(a) Types of data and their impact
(b) QM infrastructure

Figure 10. We will heavily utilize both condensed-phase/experimental data and quantum mechanical data. (a)
Shown are major types of data which will be utilized as part of the OpenFF Consortium, and what parameters they will

primarily affect. (b) Shown is a QM database infrastructure and calculation pipeline currently under construction for

torsion drives and parameter fitting; it utilizes Lee-Ping Wang’s Crank torsional parameterization tool, and interfaces with a

large-scale open QM database being developed together with the NSF-funded Molecular Sciences Software Sustainability

Institute (MolSSI).

8.1 Detailed work planned in generation 1
Work in generation 1 will begin with bond/angle refitting to high-level QM and torsion refits to high-level QM

(Figure 7), tasks which will be handled with existing infrastructure in the form of ForceBalance (for parameter

optimization) and Crank (for torsion drives), both from the Wang lab, coupled with the quantum chemical

dataset we are building with MolSSI (Section 7). This work will involve refitting existing parameters in our

prototype SMIRNOFF99Frosst force field to improve accuracy.

Meanwhile, parallel work will laying the foundation for changing the number of valance parameters and

refitting Lennard-Jones parameters. Work in the Shirts group is focusing on building hierarchical surrogate

models in order to rapidly compute condensed phase properties, allowing large numbers of properties from

NIST’s ThermoML to be used in optimizing Lennard-Jones parameters. Work in the Mobley and Chodera

groups is building infrastructure for inferring the number of necessary valence types based on sampling

over chemical perception. Work in the Gilson lab is building infrastructure for including binding data in force

field parameterization. At the same time we are also building in a framework for off-site charges.

These plans lead to a series of targeted SMIRNOFF force field and software versions shown in Figure 8.

Specifically, our version 1A release will allow parameterization of protein-ligand systems and yield a fully

open software framework, eliminating the current requirement for a license to the commercial OpenEye

software to use the force fields. After extensive benchmarking of SMIRNOFF99Frosst, we will refit targeted

Lennard-Jones parameters while preparing to do a large scale refit of torsions. A version 1B release will

then include refits of selected Lennard-Jones parameters, then we will refit selected torsions and valance

parameters yielding a 1C release. Benchmarking on industry-supplied molecules and/or fragments will yield

additional material for further improvements to torsions; while those calculations are running, we will refit

bond charge corrections (BCCs) based on condensed-phase properties for a 1D release. Version 1E will be

the first which changes the number of valence types in our force field, adding new parameters only where
most needed; it will also first introduce off-site charges in selected locations. 1F will include host-guest

binding thermodynamics as one of the properties being fit, to improve binding free energy estimates. 1G

will further expand binding thermodynamics and add additional industry supplied molecules/fragments to

fitting criteria, and 1H will focus on refinement in problem cases identified in collaboration with industry.

Benchmarking throughout this process (within the initiative and, to the extent desired, by industry partners

in their own work) will provide continued opportunity to identify and fix problem cases.

At each stage of the process, we also focus not just on producing the next force field but building the
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necessary software infrastructure to enable later versions and generations; for example, automated QM

fitting tools are already being built, but will only be utilized for our 1B release 9. Similarly, infrastructure

for off-center charges is already being developed but will only be used for our 1E release. Host-guest

thermodyanmics are already being tested for parameterization inputs but will only be included in the 1F

release, etc. This will ensure that we are able to make steady progress while also building towards larger,

longer-term accuracy goals.

8.2 Detailed work planned in generation 2
Generation 2 will mark a more substantial departure from earlier force fields, as we are expecting to need a

complete refit of Lennard-Jones parameters in a data-driven manner; Lennard-Jones refits in Generation

1 will only be those necessary for accuracy and will be kept relatively small without a full refit. When we

reach the need for a full refit we will partner with existing biopolymer force field groups to ensure our small

molecule force field is able to remain compatible with next-generation biopolymer force fields. A version 2A

force field will involve a refit of all Lennard-Jones parameters in the force field based on condensed phase
properties 8. Version 2B will introduce more parameters in a data-driven manner, and also begin including

additional untapped data from ThermoML such as speed of sound data, resulting in a 2B release. We will

then begin including small molecule NMR data and X-ray data in fitting data for a 2C release, and then after

extensive benchmarking focus on targeted refitting to improve any problem areas for a 2D release.

8.2.1 A bit about software tools

Our work involves software infrastructure in several main areas. First is our SMIRNOFF force fields, which

are applied to molecules via the general openforcefield python package which parses force fields in the
SMIRNOFF format; this is one of our core deliverables. Parameter fitting involves several components;

initially we are leaning heavily on Wang’s ForceBalance software tool, which can already optimize force fields

based on a fairly wide variety of target properties. Wang’s Crank tool also handles torsion drives, which

will be vital for torsion refitting, and these will remain part of our effort. We are also developing a general

PropertyCalculator framework which can efficiently calculate all or almost all condensed-phase properties
available in ThermoML, to allow these to ultimately be included in parameter fitting efforts. This will likely

connect to ForceBalance. The Shirts group, experts on efficiency and reweighting techniques, is playing a

vital role in making the property calculation framework efficient via the use of reweighting and surrogate

models.

9 Personnel, project management, and financials
9.1 Management plans, governance and personnel
Overall, the Consortiumwill be led by a Governing Board consisting of the five initial primary investigators (PIs)

(Chodera, Gilson, Mobley, Shirts, Wang) along with two industry representatives, advised by an Advisory Board

(which elects the industry representatives to the Governing Board) consisting of industry representatives from

pharma Partners, as separately detailed in the Consortium bylaws and research agreement. The Governing

Board will manage science priorities, determine allocation of funds and specific research directions to

accomplish this plan, and otherwise handle leadership of project personnel.

Project personnel are expected to be roughly equally distributed across the five sites, with some excep-

tions. Notably, OpenFF plans to hire a Software Scientist who to coordinate overall software architecture,

serve as the main point of support contact for pharma partners, develop key infrastructure, and oversee

the review of all code committed to the main source code repositories to ensure it conforms to best prac-

tices (established in coordination with MolSSI). The Software Scientist will ensure the software we produce

conforms to a high level of quality and aid project personnel in coordinating their work to achieve shared

goals. The Scientist will be headquartered at one of our institutions, partly dictated by personnel availability.

Currently it seems likely this position will be based in Southern California, with relatively regular travel to the

other participating institutions (three of these are in California) to facilitate coordination.
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The remainder of project personnel will primarily be graduate students and postdocs in the different

participating academic labs, with the balance between graduate students and postdocs determined by the

Governing Board based on availability and expertise of suitable personnel, as well as funding-related issues.

For example, postdoc hiring typically takes longer and postdoc positions may not last as long, and postdocs

are substantially more expensive; graduate student training takes longer but they are typically involved

longer and can be substantially cheaper. When suitable graduate students are already available in a research

group and can be diverted from other projects, these may be an ideal choice for project personnel because

of the quick startup time, low cost and potential long-term involvement, though when no such suitable

students are available, hiring of postdocs may be preferable.

The exact number of personnel will depend on the scope of funding, which will dictate overall project

velocity (Section 10). We tentatively plan that the overall project will involve one software scientist, and then

differ in distribution of postdocs/graduate students depending on total initiative funding. At $750K/yr, we

would expect to hire roughly two postdoctoral fellows and three graduate students (roughly one per group)

in addition to the software scientist, whereas at $1.2M/yr we would expect to hire roughly five postdoctoral

fellows and six graduate students (close to two per group). Personnel (except the software scientist) will be

supported via fellowships from MolSSI, the initiative’s coordinating intermediary.

9.2 Expertise and areas of groups involved
This project is a collaborative effort that blends synergistic capabilities of multiple laboratories. The Chodera

lab (Sloan Kettering) brings extensive experience in the use of statistical inference in molecular simulations

and automated laboratory measurements for biophysical data collection. The Shirts group (University of

Colorado Boulder) brings experience in developing efficient reweighting techniques for rapid computation of

physical properties given altered force field parameters, accurate thermodynamic models from chemical

engineering, and experience with extensive benchmarks of force field performance. The Mobley lab (UC

Irvine) has extensive experience in force field evaluation exercises and improvement, extensive experience

in binding free energy calculations and in benchmarks and validation, and produced SMIRNOFF99Frosst.

The Gilson lab (UC San Diego) brings expertise in the development and use of host-guest systems to test and

improve force fields, both experimentally and computationally. The Wang group (UC Davis) brings valuable

infrastructure for automated force field improvement, including the ForceBalance tool for automated

parameterization. Success in this project requires close coordination among all of these researchers.

Personnel will typically be headquartered with the group which best matches their research; e.g. torsion

fitting work is primarily being done in the Chodera and Wang groups, valence type expansion between the

Mobley and Chodera groups, and refitting of Lennard-Jones paramters in the Shirts group.

10 Timeline and project velocity
Our project timeline depends on the amount of funding/number of personnel involved, but we imagine

modulating between two basic scenarios (as detailed in the preceding section) depending on amount of

funding, which we describe as the Fast and Slow scenarios. The basic project plan in both scenarios is as

detailed in Figure 8(a), but the timing of major milestones and releases (as designated in the figure) will

differ. The following gives a tentative timeline based on a start of funding in Q3 2018, with dates marking

the END of the designated quarter:

1. Fast velocity:

• 1A: Q3 2018

• 1B: Q1 2019

• 1C: Q2 2019

• 1D: Q3 2019

• 1E: Q4 2019

• 1F: Q1 2020

• 1G: Q2 2020

• 1H: Q3 2020
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• 2A: Q4 2020

• 2B: Q1 2021

• 2C: Q2 2021

2. Slow velocity:

• 1A: Q3 2018

• 1B: Q3 2019

• 1C: Q1 2020

• 1D: Q2 2020

• 1E: Q4 2020

• 1F: Q1 2021

• 1G: Q2 2021

• 1H: Q4 2021

• 2A: Q2 2022

• 2B: Q4 2022

• 2C: Q2 2023

11 Conclusions
Overall, this initiative aims to democratize force field development and force field science, providing not just

improved force fields but infrastructure to continue improving force fields. Already we have a prototype

small molecule force field which is competitive with existing public force fields, and we have a clear plan to

continue improving this via selective refitting (such as with Wang’s ForceBalance) while laying the groundwork

for larger-scale refitting and parameterization work which will dramatically improve accuracy by using new

data and computing power to replace foundations of today’s force fields which were laid in the 1980s. This

promises steady progress towards dramatically improved force fields. We are excited to work with the

community to help make this happen.
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